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Abstract
A decision maker has to come up with a probability, preference or other judgment based on the

judgments of a number of different information sources. To do so, he needs to assign weights

to each source reflecting their assessed reliability. We argue that, crucially, reliability is to be

understood as an attribute of sets of sources, not of sources in isolation. Specifically, we propose

to view reliability as "valued diversity", reflecting both individual source quality and similarity

among sources. Intuitively, larger weight should be assigned to sources of greater quality and

greater dissimilarity from the others. The main contribution of this paper is to propose and

axiomatize a particular weighting rule, the Diversity Value, that captures these desiderata. The

Diversity Value is defined by a logarithmic scoring criterion and can be characterized as a

weighted Shapley value, in which source weights are determined endogenously. Due to the

central role of source similarity, the Diversity Value frequently violates Reinforcement and

exhibits the No-Show Paradox.
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1 Introduction

Subjective Probability is, in many ways, an attractive, even compelling framework for the rep-

resentation of uncertainty and the grounding of decision-making. However, even the best extant

justifications such as Savage’s axiomatic foundation are silent on the question of where subjec-

tive probabilities come from.

For strong personalists, this is just fine; yet many others have questioned the apparent arbi-

trariness of subjective probability, and have felt that “shooting from the hip” is not enough.

In practical decision and prediction contexts, the existence of a (subjectively) sound basis for

subjective probability judgments matters for the applicability and effectiveness of subjective

probability as an analytical tool and decision aid. From a foundational perspective, the poten-

tial arbitrariness can give rise to questions about the rationality of SEU itself, as witnessed, for

example, by many contributions to the literature on decision-making under ignorance and am-

biguity. Here, we will show how the room for arbitrariness can be narrowed down substantially,

perhaps even completely removed, in situations in which the would-be Bayesian decision maker

has a lot of help in the form of the input of multiple “experts”, or, more generally and abstractly,

“sources”.

There are two principal approaches to combining probability judgments in the literature, the

judgment aggregation and the belief revision approaches; see Genest and Zidek (1986) for a

classical and Clemen and Winkler (2007) for a recent survey.

The judgment aggregation approach. The judgment aggregation approach – which we shall

pursue in this paper – takes the source judgments at face value, and aims to distill a best pooled

judgment from the content of source judgments itself, from what the sources “say”. If the expert

judgments agree, this is unambiguous, and the agent can simply take the shared expert judgment

as his own. If the expert judgments conflict, the decision maker needs to determine the optimum

balance of argument by weighing the judgments of the various experts and aggregate them

(average them) using appropriate weights. For example, if two experts estimate the probability

of some event at 30% and 70%, and the two experts are viewed as equally reliable, then, on

balance, the best-supported estimate for the DM is 50%. The question at the heart of this paper

is how to generalize this simple syllogism to multiple, heterogeneous sources with possibly
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different reliabilities. This is a non-trivial task; for example, we shall argue that equally reliable

sources should not necessarily be weighed equally.

The aggregation approach seems very intuitive. It recommends itself on both practical and

theoretical grounds from the point of view of informational minimalism: it leaves the material

judgment on the uncertainty at issue entirely to the sources. Hence, the aggregating agent (“ag-

gregator”) has to materially evaluate only the sources themselves in terms of their “reliability”

(competence, credibility, expected accuracy etc.) regarding the matter at hand. The aggregating

agent defers to the sources who may be viewed as his epistemic intermediaries. The aggre-

gation approach is informationally minimalist since, evidently, some information or judgments

regarding source reliability have to enter in any approach; one can hardly demand less from

the decision-maker. Informational minimalism helps secure accessibility of the judgment task,

hence, hopefully, leads to sound judgments. One would also expect well-designed minimalist

approaches (“simple, but not too simple”) to perform robustly.4

The Supra-Bayesian approach. We do not argue that the aggregation approach is the only or

necessarily the best way to make use of a set of experts. In particular, an alternative approach

that is common in the literature (and frequently referred to as “Supra-Bayesian”) operates by

belief revision via Bayesian updating. The belief revision approach asks the decision-maker to

produce a prior over the uncertain true state ω ∈ Ω under consideration and the profile of expert

judgments, and to derive the target probability judgment on Ω via updating this prior on the

actual profile of expert judgments observed.

The Supra-Bayesian approach does not take the input judgments at face value, but tries to look

“under the hood”. It is extremely flexible, since, in terms of principle, it treats the expert judg-

ments as pieces of information just like any other pieces of information. The Supra-Bayesian

approach thus allows to accommodate all sorts of information and hunches that a decision-

maker may want to use in assessing the experts and the matter at hand directly. On the flip side,

the Supra Bayesian approach demands a lot more of the decision maker than the aggregation

approach. It may sometimes be feasible to satisfy these demands, or at least sensible to try,

but many times this would appear to be a challenge. To begin with, the would-be Bayesian has

4 Below, we derive some basic robustness properties of the solution concept developed here (the

diversity value). Peter Klibanoff has rightly pointed to out us in personal discussion that arguing

that informational parsimony is not enough for ‘workability’ if it is not accompanied by robustness of the

derived judgments/decisions in the required inputs. We believe that the diversity value promises to perform strongly

on both counts, but more work and experience in applications is needed to confirm this expectation.
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to come up with a prior over a much larger state space than the one describing the value of

interest. This is not just computationally more effortful, but would appear in many cases hard

to do in a way that would or should inspire much confidence in the result.5 In particular, the

Supra-Bayesian approach requires a well-informed prior over the distribution of expert opinions

conditional on the true state. Is this very plausible in situations in which the uncertainty at issue

is unfamiliar and the experts disagree about how to interpret the available empirical evidence?

The Supra-Bayesian approach is sometimes referred to as “the” Bayesian approach (e.g. Clemen

and Winkler 2007), suggesting that the aggregation approach is somehow less than fully Bayes-

rational. But such a conclusion would be premature and misleading. In particular, the ag-

gregation approach is fully consistent with subjective expected utility. Yet, rather than using

Bayes rule, it constructs aggregator probabilities conditional on the profile of source judgments

directly, leaving the joint distribution on judgment profiles undetermined. If needed, the aggre-

gator is free, of course, to fill in this gap on his own.

“Experts” are but one example of “sources” of judgment formation. More generally, the differ-

ent sources can be in the agent’s own head, so to speak, as different models, theories, heuristics,

frames, perspectives etc. Source aggregation will be relevant if the agent has not been able to

come up with an encompassing way to integrate all of the available pieces of evidence directly,

but acknowledges the partial validity of a multiplicity of them. For instance, laymen can be

valued as relevant sources besides the “experts” in the ordinary sense; they may, for example,

contribute “common sense” that the experts may not necessarily have. Similarly, the aggregator

may use his own personal “gut judgment” as one source along with the judgment of others.

There is no set minimum threshold for the quality of the cognitive input generating the source

judgments. Source aggregation can be applied, in principle, to whatever hunches and epistemic

crutches the decision maker has at his disposal, as long as they can be cast in probabilistic form.

Our model can then be viewed as explaining how the DM can construct minimally sensible

probability judgments without engaging in demanding forms of cognitive integration.

On the flip side, one might be inclined to think that source aggregation by weighted averaging,

while sensible, is perhaps too unambitious, and that, ordinarily, decision-makers are equipped

with a rich sensorium of personal judgment that could exploit source inputs in far more sophis-

5 Indeed, it is well-known that the Supra-Bayesian approach suffers from potential robustness problems;

see, for example, Winkler and Clemen (1992).
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ticated and accurate way than mere averaging can. Would that it were so! For in practice, it

has proven very hard to demonstrate that personal probability judgment can beat even simple

statistics, as shown by the influential contributions by Meehl (1955) and Dawes (1979). Tetlock

(2005) provides a recent, extremely thorough and rich study of this in the context of expert

political judgment.

Determining Source Weights. To make the aggregation approach operational, two things are

needed: an aggregation rule and aggregation weights. The literature, in particular the literature

on the aggregation of probabilities, has focused on the characterization of various aggregation

rules, most prominently on the linear and logarithmic “opinion pools”, see the surveys by Genest

and Zidek (1986), Clemen and Winkler (2007), and Dietrich and List (2014) for references.

Both of these can be viewed as given by weighted averages of source judgments taking values

in some convex subset of some vector space, see in particular Rubinstein and Fishburn (1986),

who obtain these as instances of the same ‘abstract’ aggregation theorem. Which of these

rules, if any, is “the right” one, remains controversial. We sidestep this important issue here, but

assume that the aggregator is committed to some class of aggregation rules that can be expressed

as a weighted average.

Instead, we address here the second important issue which has remained largely unaddressed in

the literature, the Weighting Problem: how are the source weights themselves to be determined?

To get a sense of what a sound and helpful answer might look like, we need to ask why it

is worth aggregating at all? Why not simply put all weight on the best one (or ones)? To

see this, consider two experts, Ann and Bob, one of whom You view as slightly more reliable

than the other. Why not put all the weight on the superior expert Ann? Sometimes this might

indeed be the best, and, arguably, would be best if Bob was simply an inferior copy of Ann.

Yet, frequently, it would be preferable to shift some weight to Bob if Bob’s judgment reflects

something that Ann might have missed. Even if Bob has missed more than Ann has, his opinion

seems worth taking into account at least to some extent. This emerges even more clearly in the

case in which You view Bob as equally reliable to Ann. Then it seems strictly better to give both

equal weight, rather than arbitrarily plump for one of them. By continuity, if Bob is inferior but

has something of his own to add, You would want to give him positive weight. More broadly,

reliability is based on “valued diversity”: aggregation helps because it allows to (optimally)

combine the disparate, and unequally valuable, perspectives of the different sources.
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Reliability as valued diversity must be understood as an attribute of sets of sources, not of

singleton sources by themselves. It is not enough to think of reliability in terms of the quality

of individual sources, and take weights to reflect relative source quality directly. Such a “fixed-

weight” approach would assign each potential source i ∈ I a non-negative real number qi

measuring its “quality”. In any subset of available sources J ⊆ I , the relative weights of two

sources
w
[J]
i

w
[J]
j

are given by the ratio of qualities qi
qj

; so w
[J ]
i is given by qi∑

j∈J qj
. But, we submit,

that this is too simple, and too restrictive6.

To see the problem, consider the case in which each of the n experts is viewed as equally reliable

in pairwise comparison. Thus, by assumption, if the aggregator has to base his judgment on the

judgments of just two of them, he deems it best to weigh them equally. Does this imply that if

the judgments of all n experts are available, each of them should be assigned weight 1
n

?

The fixed-weight approach answers this question in the affirmative: assigning equal weights

in pairwise comparisons reveals equal underlying quality, which in turn implies equal weight

assignments in any set. But this seems far too strong: equal quality does not necessarily imply

equal weights. To the contrary, the similarity of sources – in the epistemically relevant ways

– matters crucially as well. To take an extreme case, consider a situation with three experts

Ann, Bob and Rob such that two of them, Bob and Rob, are epistemically indistinguishable

(“clones”). In such a situation, the judgment of Rob merely duplicates that of Bob. Hence, from

the point of view of the aggregator, the availability of Rob does not add anything; the weight of

the non-cloned expert Ann should thus remain at 1/2, rather than drop to 1/3. More generally,

if Bob and Rob are more similar to each other than they are to Ann, Ann’s weight should be the

largest among the three, since she is the most distinct expert. We shall call this the Similarity

Effect .

As a second example, consider a situation in which one expert a “dominates” the other, b: the

aggregator not only deems b to be inferior to a, but b’s judgment does not add anything to a’s

judgment. For instance, b may be a popularizer of a or a disciple of a, or b could be yesterday’s

somewhat less informed or less reflected version of a. Thus, if only a and b are available, the

aggregator would simply follow a’s judgment ignoring b’s, i.e., w
[{a,b}]
a = 1 and w

[{a,b}]
b = 0.

What does this imply for the relative weights in pairwise aggregation in the presence of a third,

6 Much of the literature on expert aggregation, especially aggregation of probability judgments,

reads that way, but this is hard to pin down. The reason is that the basic characterization results

are based on variable profiles (of judgments) but a constant set of experts, so they do not pin down

whether and how relative weights change with the set of available sources.
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unrelated source c? The fixed-weights approach implies that, if c receives positive weight in the

presence of a, w
[{a,c}]
c > 0, then it must receive all the weight in the presence of b, w

[{b,c}]
c = 1,

and b none. Again, this seems far too strong. Arguably, all that one can validly infer is that b’s

weight should be smaller than a’s, w
[{b,c}]
b < w

[{a,c}]
a ; after all, b, considered in isolation, may be

almost as reliable as a while being dominated. We call this the Dominance Effect.

The Similarity and Dominance effects demonstrate that the fixed-weights approach is too re-

strictive. “Reliability” is thus not simply an attribute of singleton sources, but needs to be

thought of as applying to sets of sources. We thus propose to describe sources in terms of a “re-

liability function” v : 2|I| → R+. This set function will typically be non-additive, reflecting the

fact that the increase in reliability due to a given source will typically depend on the presence

of other sources.7

The Diversity Value. As v is generally non-additive, one needs to derive additive reliance

weights from non-additive reliability measures. Formally, this is analogous to determining the

value of a cooperative game. Yet, perhaps not very surprisingly, off-the shelf solution concepts

from the literature such as the Shapley value do not work here. Thus, this paper sets out to

axiomatically derive an appropriate weighting rule, the “Diversity value”, and study some of its

properties. In particular, we show that the Diversity Value naturally accounts for the Similarity

and Dominance Effects (see Section 5 for formal results).

In order to define and characterize the Diversity Value, we need to assume that reliability func-

tions have the formal structure of diversity functions as introduced in Nehring-Puppe (2002),

henceforth NP. Principally, this requires submodularity, which means that the marginal relia-

bility of any source decreases (weakly) in the presence of other sources, corresponding to a

view of sources as epistemic substitutes. As argued in more detail in Section 2, this assumption

of sources as epistemic substitutes follows in turn naturally from the aggregator’s deference to

sources as epistemic intermediaries which is central to the aggregation approach. The restric-

tion of reliability functions to diversity functions has an important potential side-benefit, as it

makes possible a ‘quasi-objective’ explanation of reliability functions in terms of the diversity

of sources in relevant epistemic characteristics, in particular their richness and (dis)similarity.

7 This provides room for the Similarity and Dominance Effects. The Similarity Effect arises in

situations where all sources are equally reliable as singletons, but where some pairs are deemed less

reliable by the aggregator than others, reflecting their greater similarity. The Dominance Effect, on

the other hand, arises in situations in which one source adds to the reliability of some sources but

not to that of others, i.e., v (b, c) > v (c), while v (b) < v (a) = v (a, b).
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Loosely speaking, the Diversity Value can be viewed as the “best approximation” of the non-

additive diversity function by an additive weighting function: if the diversity function is addi-

tive, the Diversity Value coincides with it. Thus, the fixed-weight approach is embedded as a

special case. Formally, the diversity value is based on the maximization of a logarithmic scor-

ing criterion and can be viewed as an extension of logarithmic scoring rules for probabilities

(additive, non-negative set functions) to diversity functions, see for example Savage (1971) and

Lindley (1982). We also characterize the Diversity Values as version of the Shapley value in

which source weights are determined endogeneously.8

Potential Applications. The Diversity value has a wide range of potential applications. We

have motivated it above in terms of the aggregation of probabilities, but it is relevant to the

aggregation of judgments derived from multiple sources quite broadly. For instance, a consumer

may evaluate a product based on the product ratings on different websites that may use different

algorithms and/or different data inputs.

But even outside source aggregation, the Diversity value may be applicable in many contexts

in which weighted averages are taken, such as in the construction of many index numbers.

Often, such indices are constructed based on multiple criteria or sub-indices. As there typically

is no canonical “head-count” of criteria, criteria need to be weighed explicitly or implicitly,

and similarity effects frequently matter. As a classical example from the realm of sports, take

the decathlon in track-and-fields which serves to determine the best all-around track-and-fields

athlete. An equal weighting of Olympic disciplines would result in a composite weights of

9 : 4 : 3 for running, throwing and jumping respectively. By contrast, the actual weights are

4 : 3 : 3, reflecting the greater similarity among running disciplines.9 There are many economic

applications. For example, one question that has attracted recent attention is the imputation of

a preference ordering in the presence of observed choice inconsistencies. One natural approach

to this is to evaluate how well a hypothetical preference ordering explains a particular choice

in a particular choice situation, and to form some weighted average over choice situations, see

in particular Apesteguia and Ballester (2013) and Chambers and Hayashi (2012) for relevant

axiomatics. For this method to produce a sensible measure, it will have to appropriately reflect

potential (dis)similarities between choice situations.

8 While the Shapley value itself displays the Similarity Effect, it does not accomodate the Dominance Effect.
9 In further recognition of similarity effects, the running distances are well spaced (100m, 400m,

1500m, plus 110m hurdles) if, for obvious pragmatic reasons, a bit tilted towards the short end.
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Another pertinent example is the case-based decision theory (CBDT) as developed by Gilboa

and Schmeidler (2001) and in a long line of works. There, past cases take the role of sources,

and the judgment (prediction) regarding the case at hand takes the role of the aggregator’s target

judgment. In broad terms, the Diversity value looks appealing here; in particular, the Similarity

Effect would amount to a discounting of the joint weight of a set of similar cases relative to

their individual weight. This seems sensible and relevant in many applications.

While formally related, case-based induction addresses a different problem than source-based

judgment aggregation (SBJA): whereas the latter concerns the resolution of differences in judg-

ment, the former concerns the issue of how to learn from past experience encoded in a data-base.

There is no counterpart in source-based judgment aggregation to the guiding idea of CBDT that

“From causes that appear similar we expect similar effects. This is the sum of all of our ex-

perimental conclusions”, Hume (1748, Section IV). Also, while CBDT seems more naturally

applicable in some environments than others, the structure of the uncertain environment has no

obvious bearing on the applicability of SBJA (since here the structure of the uncertainty at issue

is captured within the judgments of the sources on whom the aggregator relies). So CBDT and

SBJA bear on quite different problems, and need to be evaluated independently on their own

terms.

At the same time, there are interesting points of contact between SBJA and CBDT. In particular,

the main result of Billot et al. (2005) (henceforth BGSS) can be read as a result on SBJA,

specifically as a characterization of the linear opinion pool in probability aggregation with fixed

weights. Their central axiom is a version of the reinforcement axiom of Young (1975) and

Myerson (1995) introduced to characterize scoring rules in voting theory. We have pointed

out the limitations of the fixed-weights-assumption above; the role of the reinforcement axiom

within the present framework and its close relation to the class of additive reliability functions

are spelled out in more detail in Section 5 below.

“Similarity" plays a key role in both CBDT and SBJA, but in rather different ways. BGSS

interpret their fixed weights as similarities between past cases and the case at hand. While

attractive from a case-based perspective, this notion of similarity has little heuristic value from

a judgment-aggregation perspective. By contrast, in SBJA, similarity plays an important role as

similarity between sources, and thus as a key determinant of the context-dependence of weights.

Yet similarities between past cases (cases within the data base) should be quite relevant for
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CBDT as well; we thus plan to devote future work to explore to the applicability of the Diversity

value to CBDT.

The rest of the paper is organized as follows. In Section 2, we define a class of reliability

functions, which describe the perceived reliability of a set of sources. We then impose some

basic requirements on how the perceived reliability should be reflected in the weights used for

aggregation. Section 3 introduces the Diversity value as a way to determine the weights assigned

to sources, discusses its properties and provides some examples. Section 4 provides the axioms

characterizing the Diversity value and states the main representation theorem. In Section 5, we

explain how the perceived similarity between sources (as captured by the reliability function)

affects the weight assignment and the aggregate judgment. Section 6 concludes. All proofs are

collected in the Appendix.

2 From Source Reliability to Source Weights

2.1 General Setting

Let I be a finite set of information sources (e.g., experts, models), each of which supplies

a judgment to the aggregator. The source judgments are to be aggregated using appropriate

weights for each source. In turn, the determination of weights is to be based on the aggregator’s

assessment of the reliability of various subsets of sources. This assessment is summarized by a

reliability function v : 2|I| → R.

“Reliability” is introduced here as technical term like “utility” and “probability”. Heuristically,

the reliability of a set of sources J ⊆ I reflects the aggregator’s assessment of its informative-

ness on the assumption that his judgment on an issue or set of issues is to be wholly based on

the material judgments of exactly these sources. Technically, reliability functions can be viewed

as von-Neumann Morgenstern “utility” functions representing rankings of lotteries (probabil-

ity distributions) of sets of sources in terms of their expected reliability, as in NP; reliability

functions thus have an affine scale. For the following, it is useful to normalize v(∅) = 0, thus

leaving v with a ratio-scale (unique up to positive multiplication).

In the next subsection, we shall describe which set functions v : 2|I| → R should count as

admissible reliability functions. Let their set be given by V. For each v ∈ V, we would like to

find a vector w ∈ ∆|I|−1 which assigns to each source i ∈ I a weight wi. These weights can
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then be used to aggregate the judgments submitted by the sources, e.g., by taking the weighted

average, the median, etc. Hence, we are looking for a mapping Ψ which assigns to each v ∈ V
a (set of) weight(s) w ∈ ∆|I|−1 in a consistent way. Such a mapping Ψ : V ⇒ ∆|I|−1 will be

called a value.

The weights specified by the value Ψ are to be used in the aggregation of source judgments. In

the simplest, paradigmatic case, source judgments are given by a real number, representing, for

example, the expected value of some random variable; if that random variable is an indicator

function 1E , source judgments represent the subjective probability of the event E. In these

cases, Ψ induces aggregation scheme Ψ̂ : R|I| ×V→ R given by

Ψ̂ (x1, ..., xn; v) = {x | x =
∑
i∈I

wixi, w ∈ Ψ (v)}. (1)

Note that the potential set-valuedness of Ψ may spill over into set-valuedness of Ψ̂. We will

show, however, that this is not an issue for the Diversity value which is set-valued only in rather

degenerate cases.

The Diversity value applies to much more general aggregation schemes than those in the form

of (1). First of all, the notion of weighted averaging applies not just to the real line, but to

general convex subsets of finite or infinite-dimensional vector spaces. Second, weights need

not be used via averaging. A substantially more general form of aggregation schemes is based

on the weighted scoring functions in the sense of Myerson (1995); see also Pivato (2013) for a

recent study. To define these, let X be an abstract space of judgments, and ` : X × X → R+

denote a loss function with the property that ` (x, x) = 0 for all x ∈ X. Loss functions might be

given by metrics, but need not satisfy symmetry or the triangle-inequality in general. The loss

function ` induces the aggregation scheme Ψ̂ : X|I| ×V→ R given by

Ψ̂ (x1, ..., xn; v) =
⋃

w∈Ψ(v)

arg min
x∈X

∑
i∈I

wi` (xi, x) . (2)

The weighted arithmetic average in (1) is obtained by taking ` to be the square Euclidean dis-

tance; by contrast, the weighted median is obtained by taking ` to be Euclidean distance it-

self. The functional form (2) is extremely flexible. If X = {0, 1}, it gives rise to weighted

supermajority-voting. If X is the set of linear orderings on a finite set of alternatives, then dif-

ferent loss-functions ` induce the weighted Borda and weighted Kemeny rules. In this example,

the judgments submitted by the sources could be viewed as their recommendations on the best
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course of action in terms of an ordinal ranking.

2.2 The Structure of Reliability Functions

Sources as Epistemic Substitutes. Which set functions v are meaningful reliability functions?

First of all, reliability is monotone: additional sources cannot harm the aggregator (in his own

assessment), since he is free to ignore any source that he deems as wholly irrelevant or useless.

To go further, we rely on a concept of sources as epistemic substitutes. This concept makes

sense within the aggregation approach within which the agent defers to the sources as epistemic

intermediaries and is thus confined to making only ‘schematic’ use of the source judgments by

weighted averaging. By contrast, outside the aggregation approach, sets of pieces of informa-

tion need not be epistemic substitutes at all. As it may take two keys to unlock a door while

one would be useless, it may take two witnesses to establish the guilt of an accused, while the

testimony of one would be inconclusive. But such complementarities require a material inter-

pretation of the content of the witness judgments, not merely an averaging of their individual

stand-alone assessments of the defendants’ chance of being guilty.

The concept of sources as epistemic substitutes motivates the formal assumption that v should

have the structure of a diversity function in the sense of NP. We will refer to this assumption as

the Diversity Postulate. It implies in particular that v is submodular: for all S ⊆ S ′ and i /∈ S,

v (S ∪ {i})− v (S) ≥ v (S ′ ∪ {i})− v (S ′) .

As a property of measures of diversity, this is very intuitive. The larger the extant set already

is, the harder it becomes for an element to add further diversity. For reliability functions, it also

makes sense to postulate that the larger the extant set S, the (weakly) less any given source adds

to its reliability, as expressed by submodularity.

Diversity functions strengthen this by assuming total submodularity which may be understood

as requiring ‘uniformly decreasing’ marginal reliability. To expand, Monotonicity can be un-

derstood as requiring first-order “derivatives” v (S ∪ {i})− v (S) to be non-negative; likewise,

submodularity can be understood as requiring second-order “derivatives” v (S ∪ {j} ∪ {i}) −
v (S ∪ {j}) − v (S ∪ {i}) + v (S) to be non-positive. Generalizing this, total submodularity

amounts to requiring that all higher-order derivatives can be signed, with alternating sign. 10

Existence of a multi-attribute representation. As elaborated in detail in NP, a key benefit

10 Formally, it is shown in NP that the attribute measure λ defined below is non-negative if and

only if v is totally submodular, i.e., ν is monotone (S ⊂ S′ implies ν (S) ≤ ν (S′)) and satisfies
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of the assumption of total rather than plain submodularity is the existence of a multi-attribute

representation λ : 2|I|\{∅} → R such that

v (S) =
∑

{A|A∩S 6=∅}

λA, (3)

with λA ≥ 0 for all A ⊆ I .

In this representation, the reliability of a set S, v (S), is the sum of the values λA of all “at-

tributes” A possessed by some element in S. Any set function v has a (unique) representation

λ satisfying (3); it is given by the inverse of the linear map λ 7→ v, its “Conjugate Moebius

Inverse”, as follows:

λA =
∑

{S|S⊆A}

(−1)|A\S|+1 v (Sc) , (4)

where Sc denotes the complement of S in I . The substantive restriction on reliability functions

is thus the non-negativity constraint on the implied attribute values λA. The reliability function

v and the attribute measure λ are thus two dual ways to describe the same object.

Diversity as evidential basis for reliability. At one level, one can take λ to be merely a

formal, mathematically illuminating “dual” redescription of v. From this perspective, λA can

be understood as the implied contribution to reliability that is specific to the set of sources A.

The dual λ proves an excellent reasoning tool and intuition pump. Indeed, it is essential for the

very definition and characterization of the Diversity value to begin with.

At another level, one can take the multi-attribute representation λ to describe identifiable fea-

tures of the sources, as deemed relevant and valued by the aggregator. From this “quasi-

objective” viewpoint, λ measures the distribution of valuable epistemic features across sets

of sources. Examples of such features are "being an ecologist", "having a doctoral degree from

MIT", "having published a paper in Nature”, etc.; in our formalism, the attribute associated

with a feature is simply the set of sources having that feature. The numeric value of an attribute

λA can then be viewed as the total measure of the reliable expertise specific to the set A. Often,

only a subset of the set of conceivable attributes will be realized at all in the sense of having

the condition: for all collections of subsets of I , {Sj}j∈J ,

ν (∩j∈JSj) ≤
∑

{K|∅ 6=K⊆J}

(−1)
|K|+1

ν (∪j∈KSj) .

For the interpretation of total submodularity in terms of higher-order differences, see Nehring

and Puppe (2004) following Choquet (1953). The former paper also contains a formal argument

(Theorem 3) supporting the claim that the gap between submodularity and total submodularity is

“small”. For related work on ‘totally supermodular’ set functions, see Crama et al. (1989).
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strictly positive value λA > 0. This set of “relevant attributes” will be denoted by Λ. The

reliability of v(S) is then the total amount of reliable expertise possessed by some source in S.

On this quasi-objective interpretation, the reliability of a singleton source i is simply the amount

of reliable expertise possessed by i.A source i offers high marginal reliability to S if i possesses

distinct valuable attributes possessed by no source in S :

v (S ∪ {i})− v (S) = λ ({A | i ∈ A,A ∩ S = ∅}) .11

Further, the attribute measure λ yields natural notions of dissimilarity d (i, j) and similarity

s (i, j) between sources.

Definition 2.1 (Dissimilarity) The dissimilarity between i and j, d (i, j) is the marginal relia-

bility i adds to j:

d (i, j) =: v ({i, j})− v ({j}) = λ ({A | i ∈ A, j /∈ A}) . (5)

Dissimilarity need not be symmetric; it is symmetric iff all singletons have equal value, which

we will refer to as the uniform case. Whether symmetric or not, d satisfies the triangle inequal-

ity.

Likewise, one can define a natural notion of similarity as the overlap in valued attributes:

s (i, j) := λ ({A | i ∈ A, j ∈ A}) .

Evidently, for any i, j ∈ I , v (i) = d (i, j) + s (i, j). By construction, s is symmetric; interest-

ingly, any non-negative, symmetric function s : I × I → R+ is the similarity function for some

attribute metric λ. The multi-attribute model of diversity thus links up naturally with intuitive,

everyday notions of dissimilarity and similarity.

As in our everyday understanding, it makes sense to think of dissimilarity, similarity and diver-

sity judgments as saying something (coarsely) about the world. It is this aboutness which allows

one to think of the attribute metric λ as an evidential basis for the reliability function v. At the

same time, those judgments are not simply statements of ‘raw facts’, but necessarily incorporate

a subjective, ‘judgmental’ element. In particular, (dis)similarity judgments are meaningful only

relative to a context of “relevance” which determines which attributes matter and how much.

Relevance of experts, for example, is determined by their epistemic competence in regards to

the judgment task at hand.12

11 This meaures notation is often convenient; we write λ(A) for
∑
A∈A λA.

12 We believe that the potential objectifve interpretation of the central primitive, the reliability function, is an

important strength of the proposed model. At the same time, it is not essential to its conceptual

coherence, and can be viewed as a more-or-less appealing piece of rhetorics.
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2.3 Some Terminology

We now state some properties of the reliability (diversity) function which will be useful in the

sequel. The first one, uniformity, expresses equal reliability of all sources.

Definition 2.2 A diversity function v is called uniform if v (i) = v (j) for all i, j ∈ I .

Intuitively, uniformity captures the idea that, taken in isolation, each of the sources is equally

informative.

The second property strengthens the requirement that v is monotone to strict monotonicity:

Definition 2.3 A diversity function v is strictly monotone if for any S ⊂ S ′, v (S) < v (S ′).

Note that, by submodularity, v is strictly monotone iff the condition is satisfied for S ′ = I and

all S such that S = {I\ {i}} for some i ∈ I . Condition (4) in turn implies that this is equivalent

to13 λi = v (I) − v (I\ {i}) > 0 for all i ∈ I , i.e., each of the sources possesses a specific

relevant attribute not shared by any other source.

Definition 2.4 A diversity function v is additive if for all S ⊆ I , v (S) =
∑

i∈S v (i).

Clearly, v is additive if all relevant attributes are singletons.

We can also use the properties of the reliability function to describe the type of information

sources available. We can, e.g., identify sources which have no specific attributes on their own.

Such sources are called inessential:

Definition 2.5 A source i is inessential if v(I\ {i}) = v (I).

Obviously, a source i is inessential iff λi = 0. Hence, a reliability function is strictly monotone

iff all sources are essential.

A special cases of an inessential source is a null source, which does not have any attribute with

a positive value, i.e., λA = 0 whenever i ∈ A:

Definition 2.6 A source i is null if v(S ∪ {i}) = v (S) for all S ⊂ I .

Clones, or sources which are epistemical copies of each other present another example of

inessential sources:

Definition 2.7 Sources i and j are clones if v(S ∪ {i}) = v (S ∪ {j}) = v (S ∪ {i, j}) for all

S ⊂ I such that i, j 6∈ S.

13 In the sequel, we slightly abuse notation by omitting the curly brackets and writing λi for λ{i},
λijk for λ{i,j,k}, as well as v (i), v (i, j) instead of v ({i}), v ({i, j}) etc.
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It is easy to see that i and j are clones iff they possess the same set of attributes.

Below, we will encounter and discuss in detail a further instance of inessential sources, that of

dominated sources.

A value Ψ is defined for a fixed set of sources I . However, Ψ also determines how weights

depend on which subset of sources J is effectively available; such availability restrictions can

be modeled simply by considering the effective restriction v[J ] ∈ V of v to a subset J ⊆ I.

Definition 2.8 (Effective Restriction to J) For any S, J ⊆ I , v[J ] := v(S ∩ J).

Conceptually, the reliability of any subset of J is simply the reliability of available sources

within J . The sources in I\J are evidently null under v[J ]. Note also that Conjugate Moebius

inverse of v[J ], λ[J ] is given by

λ
[J ]
A =

∑
{B|B∩J=A}

λB,

for any A ⊆ I . Thus, the reliable expertise specific to A within J is the total value of reliable

expertise of any superset of A in I whose members in J are just A.

2.4 From Source Reliability to Source Weights: The Two Fundamental

Axioms

Given a reliability assessment v ∈ V, what are the optimal weights w ∈ ∆|I|−1? A particular

concept of optimality will be described by a, possibly multi-valued, mapping Ψ : V ⇒ ∆|I|−1

from the set of reliability assessments to the set of weight vectors. Formally, we are looking

for the “value” of a cooperative game. While this analogy is heuristically somewhat useful, one

cannot expect to be able to take solution concepts from the literature off the shelf.

Simply, if loosely, the question is this: how does reliance follow from reliability? We consider

two axioms in particular as fundamental, which we shall call the Core and the Dominance

axioms. They provide lower and upper bounds for reliance weights given a particular reliability

function.

The guiding rough intuition behind both axioms is the idea that reliance weights of sources

should be aligned with their marginal contribution to the overall reliability of the set of available

sources. Recall that, by submodularity, the marginal reliability of any subset is decreasing in

the size of the set of co-available sources. Thus, for any pair of sets J, J ′,

v (I)− v (J c)

v (J ′)
= min
{S,T |S∩J=∅,T∩J ′=∅}

v (J ∪ S)− v (S)

v (J ′ ∪ T )− v (T )

provides a lower bound on the ratios of marginal reliabilities. This in turn provides a natural
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lower bound on the reliance weights of sets of sources.

Axiom (Core) For all w ∈ Ψ (v), and any sets J , J ′ ⊆ I ,
w(J)
w(J ′) ≥

v(I)−v(Jc)
v(J ′) .

Simple algebra reveals that this is equivalent to requiring that, for all w ∈ Ψ (v) and all J ⊆ I ,

w (J) ≥ v (I)− v (J c)

v (I)
. (6)

In particular, if v (I) = 1, then one can express this dually in terms of attributes as

w (J) ≥ λ ({A | A ⊆ J}) .

Thus, the Core axiom requires that the value of all attributes unique to sources in J be allocated

to these sources.14

Remark 2.1 We have used the term “core” for what is technically the game-theoretic core

of the ‘conjugate’ game S 7→ v(I) − v(Sc). Hopefully, the core terminology triggers helpful

associations. In particular, it may help to think of every subset of sources as being ‘entitled’ to

its marginal contribution to the reliability of the others.

Remark 2.2 In the axiomatization to follow, we need only a special, boundary case of the

Core axiom applied to additive reliability functions. In that case, the axiom requires the opti-

mal weights to be proportional to reliabilities. Note that additivity of a reliability function is

equivalent to the absence of any similarity, i.e. to the condition that s (i, j) = 0 for all i, j ∈ I;

hence, the term “Additive Core” for the following axiom:

Axiom (Additive Core) For all additive v ∈ V, Ψ (v) =
{(

v(i)
v(I)

)
i∈I

}
.

The second axiom applies to situations in which one source “dominates” another.

Definition 2.9 Source i dominates source j if, for all S s.t. i, j 6∈ S, v (S ∪ {j}) ≤ v (S ∪ {i}) =
v (S ∪ {i, j}), with at least one strict inequality.

Note that, by submodularity, i dominates j if and only if v (j) < v (i) = v (i, j). Equivalently,

i dominates j if and only if i belongs to a strictly larger set of valued attributes, i.e. iff

{A ∈ Λ | i ∈ A} ⊃ {A ∈ Λ | j ∈ A} .

If i dominates j, j’s judgment adds nothing to that of i, hence, it should be ignored without loss.

Axiom (Dominance) If i dominates j, wj = 0 for all w ∈ Ψ (v) .

A more fine-grained argument can be given. Consider any hypothetical assignment of weights

w ∈ ∆|I|−1 with wj > 0. Then the weight assignment w′ =
(
w−{i,j}, wi + wj, 0

)
with w′j = 0,

w′i = wi+wj , andw′k = wk for k 6= i, j, is superior to the weight assignmentw as it replaces the

14 This is reminiscent of Shafer’s (1976) notion of allocating probabilty mass in the context of non-

additive probability theory.
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reliance on source j with weight wj by more extensive reliance on the dominating source i. It

follows that any optimal assignment of weights w must involve zero reliance on the dominated

source j.

Note that, for this argument to work, j needs to be dominated by a specific source i to which the

weight can be shifted in an improving manner. It is not enough that j merely be inessential, i.e.

that v(I) = v(I\j). The argument for Dominance fails to extend to this case, because while j

may appear not to add anything, it is not clear how weights should be shifted away from j in an

improving manner. Indeed, note that one cannot even coherently require inessential sources to

carry zero weight in all cases, since there exist reliability functions v ∈ V for which all sources

are inessential.

While the Core axiom is standard in cooperative game theory, the Dominance appears novel.

Indeed, we are not aware of a cooperative value that satisfies it. For example, while the Shapley

value satisfies the Core axiom, it violates Dominance. To see this, observe that, for any reliabil-

ity function v, by monotonicity of v, the Shapley value assigns zero weight to a source i if and

only if that source is a null source, i.e. v(J) = v(J\ {i}) for all J ⊆ I; this is equivalent to i

being dominated by all other sources, not just by some source as assumed by Dominance.

3 The Diversity Value: Definition, Examples and Normative

Properties

The central task of the paper is to define a value that satisfies the Core and Dominance axioms

(and is otherwise well-behaved), and to characterize this value axiomatically. That value will be

referred to as the Diversity value. Intuitively, the Diversity value tries to allocate the weight of

sources in line with their distinct marginal contribution to the overall reliability of the available

set. Formally, the diversity value is based on the maximization of a logarithmic scoring crite-

rion and can be viewed as an extension of logarithmic scoring rules for probabilities (additive,

non-negative set functions) to diversity functions, see for example Savage (1971) and Lindley

(1982).

Specifically, ΨDIV (v) is the set of maximizers of∑
A⊆I

λAφ (w (A)) , (7)
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where φ (·) = ln (·)15.

Definition 3.1 (Diversity value) For a given v with associated λ,

ΨDIV (v) = arg max
w∈∆|I|−1

∑
A∈Λ

λA ln

(∑
i∈A

wi

)
. (8)

The functional form (7) with a strictly monotone φ ensures Dominance, while the specification

φ (·) = ln (·) guarantees the Core property. We shall refer to the class of values defined in (7)

as score-based values, ΨSCV
φ . The ‘scoring function’ φ ‘rewards’ a larger weight assignment

to any attribute A. Since the total weight mass to be assigned is fixed, the additively separable

functional form (7) rewards large weight assignments to those sources i that possess attributes

A 3 i with large distinct reliability λA.

To see that score-based values ΨSCV
φ satisfy Dominance, consider a hypothetical weight assign-

ment w violating that condition, i.e., assigning positive weight wj > 0 to some source j that is

dominated by some other source i. Consider the weight assignment

w′ =
(
w′i = wi + wj, w

′
j = 0, (w′k = wk)k 6∈{i,j}

)
.

By construction, for all A ∈ Λ, w′ (A) ≥ w (A), and for some A ∈ Λ containing i but not j,

w′ (A) > w (A). By strict monotonicity of φ,∑
A∈Λ

λAφ (w′ (A)) >
∑
A∈Λ

λAφ (w (A)) ,

thus w /∈ ΨSCV
φ (v).

However, in general, score-based values ΨSCV
φ do not satisfy the Core property, indeed not

even the Additive Core property. For example, if φ is linear, ΨSCV
φ puts weight only on those

sources i that have maximal value v (i) as singletons. Indeed, ΨSCV
φ satisfies the Additive Core

property if and only if φ is logarithmic, i.e. if and only if ΨSCV
φ = ΨSCV

ln = ΨDIV . (The simple

calculus argument for this is actually standard in the above-mentioned literature on probabilistic

scoring rules). Satisfaction of the Core property for general v’s can be shown by inspection of

the first-order conditions of (8), see the proof of Part (iii) of Proposition 3.1 in the Appendix.

The following is a list of a number of properties satisfied by the Diversity value.

Proposition 3.1 The Diversity value ΨDIV satisfies the following properties:

(i) for any v, ΨDIV (v) is a closed, convex set;

(ii) ΨDIV (v) is single-valued whenever the set of vectors {1A | A ∈ Λ ∪ {I}} has full rank;

in particular, ΨDIV (v) is single-valued whenever v is strictly monotone;

15 Note that since λA > 0 iff A ∈ Λ, the summation can be taken over Λ.
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(iii) ΨDIV satisfies the Core property, i.e., for any v ∈ V, w ∈ ΨDIV (v) and S ⊆ I ,∑
i∈S wi ≥

v(I)−v(I\S)
v(I)

;

(iv) ΨDIV satisfies Dominance;

(v) ΨDIV satisfies Clone Invariance, i.e., whenever i has a clone in v, Ψ (v) ⊇ Ψ
(
v[I\{i}]);

(vi) ΨDIV is upper hemicontinuous; i.e. for any sequence of vn converging to v and a se-

quence of weights wn ∈ ΨDIV (vn) converging to w, w ∈ ΨDIV (v).

(vii) ΨDIV is robust, i.e., for any v and any w ∈ ΨDIV (v), there is a sequence of strictly

monotone vn converging to v and a sequence of weights wn ∈ ΨDIV (vn) converging to w.

(viii) ΨDIV is scale invariant, i.e. for any c > 0 and any v ∈ V, ΨDIV (cv) = ΨDIV (v) .

(ix) ΨDIV is shift-invariant, i.e. for any v, v′ ∈ V and any b ∈ R such that v′ (J) = v (J) + b
for all J 6= ∅, ΨDIV (v′) = ΨDIV (v) .

Part (i) is a direct consequence of defining the Diversity value as a solution of the concave max-

imization problem in (8). While, in general, this solution is not unique, Part (ii) of Proposition

3.1 asserts that for strictly monotone reliability functions v, and more generally, for reliability

functions such that the set of vectors {1A | A ∈ Λ ∪ I} has full rank, ΨDIV is single-valued.

Intuitively, uniqueness is guaranteed whenever the reliability function provides sufficient infor-

mation to identify the distinct contribution of each source. This is the case, for example, if each

source has a unique attribute, i.e., λi > 0 for all i.

A simple instance of non-uniqueness arises when all sources are clones, v (S) = v (I) for all

S ⊂ I and ΨDIV (v) = ∆|I|−1. In this case, the aggregator has no basis for assigning specific

weights. Accordingly, the Diversity value implies that mass can be shifted across sources in

arbitrary fashion. If the sources have submitted different judgments, the multiplicity of weights

entails a multiplicity of judgments. One might wish to posit that clones must necessarily submit

identical judgments, and that, therefore, such multiplicity would not arise. We do not need to

take a stance on this matter here. We note though that if the decision maker feels that he has

some basis for assigning weights, he is free to recognize this information by incorporating it

into the reliability function. Note in particular that by Part (ii) of Proposition 3.1, a small per-

turbation of the diversity function v is sufficient to eliminate such indeterminacy. In particular,

choosing vε in such way that vε (I)− vε (I\ {i}) = εi and vε (I)− vε (I\ {j}) = εj implies that

wi
wj

= εi
εj

for all w ∈ ΨDIV (vε). Hence, adding an individual attribute to each of the clones helps

resolve indeterminacy. Evidently, the weight ratio will depend crucially on the perturbation

itself, i.e., on the ratio of εi and εj . Indeed, Part (vii) of Proposition 3.1, robustness, implies
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that by choosing the perturbation in an appropriate way, it is possible to approximate any of the

elements of ΨDIV (v). Thus, the potential multiplicity of the Diversity value at the boundary

can be fully attributed to its continuity asserted in Part (vi).

We have already discussed the Core and Dominance properties. Invariance to Cloning says that

any cloned source can be discarded without affecting the weight of the remaining sources. For

example, if all sources are clones, Cloning implies that, for all i ∈ I , 1i ∈ ΨDIV (v) for all i.

By convex-valuedness as in (i) , thus ΨDIV (v) = ∆|I|−1.

By (viii), only ratios of reliabilities need to be meaningful. Recalling that v is normalized at

v (∅) = 0, v can thus be viewed as expressing a ranking over lotteries of sets of sources as in

NP’s axiomatization of diversity functions. By (ix), that ranking may in fact be restricted to a

ranking over lotteries of non-empty sets of sources. Note that, in the multi-attribute representa-

tion, the presupposition of (ix) amounts to the condition that λA = λ′A for all A 6= I . Thus (ix)

can be read as saying that the amount of ‘expertise’ common to all sources does not matter to

the assignment of weights.

The reader may miss a characterization of when a source i receives a strictly positive weight.

By the Core property, it is sufficient that a source is essential, i.e. that λ{i} > 0. By Dominance,

it is necessary that a source be undominated. Call a reliability function v regular if every source

is either strictly dominated or essential. For example, this property is satisfied by reliability

functions for which Λ is closed under taking intersections. Intuitively, this means that if the

subsets of sources A and B are deemed to make a distinct reliability contribution, so does their

intersection. This is frequently natural. Note that all strictly monotone reliability functions are

regular. If v is regular, the support of the weight vector w coincides with the support of v. On

the other hand, for irregular v, no simple, qualitative characterization is available. In particular,

reliability functions v and v′ with the same set of valued attributes Λ need not assign strictly

positive weight to the same set of sources.

For illustration of how the Diversity value works, we will consider a few simple examples.

Example 3.1 (Two sources) Consider the case of two sources that are not clones. Here source

weights are proportional to their marginal reliability contributions, by the Additive Core and

shift-invariance properties,

ΨDIV (v) ∝ (v (1, 2)− v (2) , v (1, 2)− v (1)) ,

or, equivalently, to the values of the source-specific attributes,

ΨDIV (v) =

{(
λ1

λ1 + λ2

,
λ2

λ1 + λ2

)}
.

21



Example 3.2 (Chain) Suppose that any subset of sources is no more reliable than its most

reliable member, i.e. that, for any S ⊆ I, v (J) = maxi∈J v (i). This is easily seen to correspond

to the ordering of valued attributes as in a chain, in that, for all A, B ∈ Λ, A ⊇ B or B ⊆ A,

with more reliable sources having strictly larger sets of attributes. By Dominance, ΨDIV (v[J ])
concentrates all weight on the most reliable sources:

ΨDIV
(
v[J ]
)

=

{
w | supp (w) = arg max

j∈J
{v (j)}

}
.

Example 3.3 (Type Partitions) Consider a set of sources I which can be partitioned into mu-

tually exclusive types, T1...TK with Tk ∩ Tm = ∅ for k 6= m and ∪Kk=1Tk = I . Types can, e.g.,

refer to experts from different disciplines such as economics, ecology, geophysics, etc., whose

opinion about the consequences of climate change will be sampled. We assume that experts of

different types share no valuable common attributes beyond those shared by all sources. Since

the latter can be ignored by shift-invariance (Part (ix) of Proposition 3.1), w.l.o.g. one can

assume the reliability function to be additive across types. This separability assumption rules

out the existence of shared factors of reliability among subsets of types, e.g. among ecologists

and geophysicists but excluding economists, for example due to their natural-science education

and outlook.

Furthermore, we assume that experts within a given type are mutually exchangeable, hence, the

reliability function depends only on the number of experts of a given type available, but not on

their identities. These two assumptions imply that the reliability function can be written as:

v (S) =
K∑
k=1

v (S ∩ Tk) =
K∑
k=1

fk (|S ∩ Tk|) ,

where fk (n) describes the reliability assigned to a given number n of experts of type Tk.

For reliability functions with this structure, the aggregate judgment is given as an average of

type judgments X̂k by16:

Ψ̂ (x1, .., xn; v) =
K∑
k=1

v (Tk)∑K
k′=1 v (Tk′)

X̂k =
K∑
k=1

fk (|Tk|)∑K
k′=1 fk′ (|Tk′ |)

X̂k, where

X̂k =
∑
i∈Tk

1

|Tk|
xi.

Hence, the weight assigned to each type’s judgment is proportional to the reliability of the set of

sources belonging to this type in I . In turn, each type’s judgment is a (non-weighted) average

of the sources belonging to this type.

To flesh the model out further, consider the functional form fk (m) = θk

(
1− e−

m
mk

)
. Here

θk describes the "maximal" weight assigned to the type when it is sufficiently represented in

the available sources, and mk determines how many individual sources it takes to obtain this

"maximal" weight approximately. For example, if m ≥ 3mk, then 0.95θk ≤ fk (m) ≤ θk. Thus,

16 This follows from the Core property Ψ and its neutrality towards sources. As an aside, note

that, by consequence, the Diversity value and Shapley values coincide for reliability functions associated

with type partitions, a rather exceptional phenomenon.
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if all types are sufficiently represented in this sense,

Ψ̂ (x1, .., xn; v) ≈
K∑
k=1

θk∑K
k′=1 θk′

X̂k. (9)

Note that (9) may obtain even for a small number of sources in a given type when the ‘saturation

levels’ are low. E.g., ifmk ≤ 1
3

for all k, (9) holds even for Tk = 1 for all k. If the approximation

in (9) applies, the weight of an individual expert is approximately given by the weight of his

discipline divided by the number of all sampled experts from the same discipline.

Different types (e.g. different disciplines) may have different weights if the expertise of some

disciplines is more relevant than that of others. Different types may also have larger ‘saturation

levels’mk accounting for the fact that some disciplines are broader or more dispersed than oth-

ers. If saturation levels differ, it may well be that an individual representative from a narrower

discipline is more reliable on his own than an individual representative from another discipline

(v (i) > v (j)), while the overall reliability of the discipline is smaller (v (Tki) < v
(
Tkj
)
).

4 Axiomatizing the Diversity Value

To provide a characterization of the Diversity value, we will use the following axioms:

Axiom 1 (Additive Core) If v is additive, then Ψ (v) =
{
v(i)
v(I)

}
.

Axiom 2 (Dominance) If a source i is dominated in v, then wi = 0 for all w ∈ Ψ (v) .

Axiom 3 (Exclusion) If for a source i, wi = 0 for all w ∈ Ψ (v), then Ψ (v) = Ψ
(
v[I\{i}]).

Axiom 4 (Betweenness) If Ψ(v) ∩Ψ(v′) 6= ∅, then Ψ(αv + (1− α) v′) = Ψ(v) ∩Ψ(v′).

Axiom 5 (Convex-Valuedness) For all v ∈ V, Ψ(v) is convex.

Axiom 6 (Continuity) Ψ (v) is upper hemicontinuous.

The first two axioms have already been discussed in Section 2. Axiom 3, Exclusion states that

those sources, whose weight is zero under any assignment can be excluded from the set of

sources without changing the weights assigned to the remaining sources.

Axiom 4, Betweenness states that if the reliability assessment provided by v and that provided

v′ both entail that the optimal weight assignment is given by w, then so should any reliability

assessment v′′ which is "between" the two, i.e., v′′ = αv + (1− α) v′ for some α ∈ (0; 1).

Importantly, Betweenness is preserved under independent rescaling of the reliability functions

v and v′. It is thus meaningfully defined for rankings over lotteries of subsets of sources as in

NP17.

Axiom 5, Convex-Valuedness requires that whenever w and w′ are optimal weights, any weight

17 Indeed, v′′ is between v and v′ if and only if the preference over lotteries associated with v′′, %v′′
extends the intersection of %v and %v′ . That is, whenever %v and %v′ agree on any comparison

of lotteries, %v′′ agrees with them as well.
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vector w′′ "between" the two, i.e., w′′ = αw + (1− α)w′ for some α ∈ (0; 1) is also optimal.

Finally, Axiom 6 requires the value to be upper hemicontinuous: small changes in the reliability

assessment should lead only to small changes in the assigned weights.

Axioms 1–6 characterize the Diversity value defined above:

Theorem 4.1 For a given finite set I , Ψ satisfies Axioms 1–6 iff Ψ (v) = ΨDIV (v) for all

v ∈ V.

To understand how the different axioms narrow down the choice of weights to those identified

by the Diversity value, it is useful to consider some alternative rules.

Score-Based Values Consider the class of score-based values ΨSCV
φ defined in (7). As noted

above, these satisfy Dominance, but not Additive Core, unless φ is logarithmic. If φ is concave

and thus, by monotonicity, also continuous, ΨSCV
φ satisfies all of the remaining axioms.

Take-the-Best An interesting special case obtains when φ is linear. The resulting rule

ΨTTB(v) = {w | supp (w) = arg max
i∈I

v (i)}

can be referred to as “Take-the-Best”, since it puts all weight on the set of those sources which

are most reliable when considered in isolation. ΨTTB is thus completely indifferent to the

potential diversification benefits of taking into account somewhat less reliable, but undominated

sources. By contrast, ΨDIV (v) concentrates all weight on a single source only if that source

dominates all others.

Take-the-Best is named after the eponymous rule suggested by Gigerenzer and Goldstein

(1996) in the related context of drawing inferences from a number of different cues. Gigerenzer

and Goldstein (1996) argue that, despite its provocative simplicity, this rule works well in prac-

tice in many empirical contexts, see Czerlinski, Goldstein and Gigerenzer (1999) and Graefe

and Armstrong (2012). On the other hand, in the context of expert aggregation, many decision-

makers mistakenly try to align their probability judgment with the judgment of the putatively

best expert, reflecting a mistaken belief that the quality of an average of judgments is equal to

the average of the quality of judgments, see Larrick and Soll (2006).

Shapley Value The Shapley value is the most widely used solution concept for cooperative

games and can be directly applied to the class of reliability functions v upon appropriate nor-

malization. It is given by:

ΨSV (v) :=


 1

v (I)

∑
{A|i∈A}

λA
|A|


i∈I

 .

It is easy to see that the Shapley value satisfies all axioms except for Axiom 2, Dominance18.

Indeed, under the Shapley value, the value of each attribute λA is divided equally among all

sources sharing this attribute, regardless of what other attributes these sources possess. Hence,

a dominated, but non-null source will receive 1
|A| of the value λA of each of its attributes A.19

Shapley Fixpoint Value We can modify the Shapley value to satisfy Dominance on the class

18 Conversely, the Diversity value satisfies all of the axioms defining the Shapley value except for Additivity.
19 For the same reason, the Shapley value also fails to satisfy Cloning Invariance.
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of regular v’s by introducing weights into the determination of the value and endogenizing them

in fix-point manner by equating them to the resulting weight assignment. For w ∈ ∆|I|−1, the

w-weighted Shapley value ΨWSV
w is given by

ΨWSV
w (v) :=


 1

v (I)

∑
{A|i∈A}

wi∑
i∈Awi

λA


i∈I

 .

Just like the regular Shapley value, the weighted Shapley value satisfies all axioms except Dom-

inance. Endogenizing the weights by considering the fixpoints of the mapping w 7→ ΨWSV
w (v)

for a given v defines the Shapley Fixpoint value:

ΨSFX (v) :=
{
w | w ∈ ΨWSV

w (v)
}

.

The Shapley Fixpoint value always contains the Diversity value and coincides with it on the

set of regular diversity functions v:

Proposition 4.2 20The Shapley Fixpoint value ΨSFX onV has the following properties:

(i) for every v ∈ V, ΨSFX (v) ⊇ ΨDIV (v);

(ii) if v is regular, ΨSFX (v) is a singleton and ΨSFX (v) = ΨDIV (v); in particular, ΨSFX (v) =
ΨDIV (v) for strictly monotone v’s;

(iii) for any v ∈ V, ΨDIV is the unique upper hemicontinuous and convex-valued selection

of ΨSFX onV.

Note that it is straightforward from their definition that weighted Shapley values and Shapley

fixpoints are in the core. By the first part of this Proposition, this extends immediately to the

Diversity value, something that is not obvious from the latter’s definition.

The Shapley Fixpoint value is problematic on irregular v’s. Consider v with three sources

given by λ12 = λ23 = 1
2
, and λA = 0 otherwise. Note that v is irregular since the only

undominated source, 2, is inessential. Here Dominance alone requires that Ψ (v) = {(0, 1, 0)},
however, ΨSFX (v) = {(0, 1, 0), (1

2
, 0, 1

2
)}. Thus, ΨSFX violates Axioms 2 and 5, Dominance

and Convex-Valuedness.

5 The Effect of Similarity on Weights and Aggregate Judgment

In this section, we examine how the assessment that some sources are more similar than others

affects the weights assignments and the eventual aggregate judgment. We will show how the

Diversity value incorporates the idea that higher weights should be assigned to more "distinct"

sources. We will also show that aggregate judgments may exhibit a No-Show paradox, and

20 The fact that the Shapley Fixpoint Value coincides with the Diversity Value on the set of strictly

monotone diversity functions turns out to be useful in the proof of the main representation theorem.

For this reason, in the Appendix, the proof of this Proposition precedes the proof of Theorem 4.1.
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argue that this apparent ‘paradox’ is not a flaw but a design feature of the our model reflecting

the crucial role of similarity considerations.

Similarity and Weights. A natural requirement on the weighting scheme used is that it assign

higher weight to more distinct sources of information. Our next example illustrates how the

Diversity value captures this intuition.

Example 5.1 Consider the case of three experts, an economist (1) and two ecologist (2 and

3), who are asked for an estimate of the probability that the economic cost of global warm-

ing will not exceed 3% of the world GDP annually by 2100. Assume that all experts are

considered equally reliable, i.e. that v (1) = v (2) = v (3). Assume further that the two

ecologists are "more similar" to each other than to the economist. This can be stated either

in terms of attributes, as λ23 > λ12 = λ13, or, equivalently, in terms of dissimilarities, as

d(1, 2) = d(1, 3) > d(2, 3). Both statements are also equivalent to saying that the pair {2, 3}
is the least reliable among the three pairs:

v (2, 3) < v (1, 2) = v (1, 3) .

While, by uniformity, any two experts should be given equal weight when only these two experts

are available, in the triple, the most distinct source arguably makes the largest individual (mar-

ginal) contribution to the overall reliability of the triple, hence it should be given the largest

weight. This is the “Similarity Effect” discussed in the Introduction, and, in this example, it is

exhibited by the Diversity value since ΨDIV (v) = {w} with w1 >
1
3
> w2 = w3.21

Our next proposition generalizes this Similarity Effect to arbitrary uniform triples:

Proposition 5.1 Suppose that v is a uniform diversity function on I with |I| = 3. Unless

sources 1 and 2 are clones, the following are equivalent:

(i) v (1, 3) ≥ v (2, 3);

(ii) λ1 ≥ λ2;

(iii) d (1, 3) ≥ d (2, 3);

(iv) for all w ∈ ΨDIV (v), w1 ≥ w2.

The proof of Proposition 5.1 makes use of the fact that uniformity within a triple I implies the

existence of a most distinct source i, i.e., a source i such d (i, k) ≥ d (j, k) and d (i, j) ≥ d (j, k)

for j, k 6= i, as well as that of a least distinct source i′ satisfying the reverse inequalities. The

equivalence of (ii), (iii) and (iv) implies that the Similarity Effect can be restated to say that

21 Indeed, denoting by b := 1 − λ1 − 4λ12 and exploiting the symmetry between sources 2 and

3, one can solve the polynomial equations defining the Diversity value explicitly. We obtain:

ΨDIV (v) =

w =

w1 =

√
b2 + 4λ21 − b

2
, w2 = w3 =

2 + b−
√
b2 + 4λ21

4
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weights among sources are ordered according to their distinctness, or according to the value of

their unique attributes (within the triple). Furthermore, the total weight of pairs is ordered in

line with the ordering of their reliabilities: in fact, by the equivalence of (i) and (iv), for all

J, J ′ ⊆ I ,

w (J) ≥ w (J ′) if and only if v (J) ≥ v (J ′) . (10)

This congruence of the weight measure and the reliability functions does not extend, in general,

to more than three sources, or to three non-uniform sources. The former is clear from the

contrast between the additivity of w and the non-additivity of v, and is easily verified, for

example, in the type partition model. The latter is a bit more involved.22

Similarity and Aggregate Judgment. We now consider how similarity affects the aggregate

judgment.

Example 5.2 Consider again the three experts from Example 5.1 and assume that they esti-

mate the probability that the cost of climate change would not exceed 3% of the world GDP an-

nually by 2100 as follows: x1 = 0.8, x2 = 0.2 and x3 = 0.5. If only the economist and the first

ecologist are available, the best aggregate estimate is Ψ̂DIV
(

(xi)i∈{1,2} , v
[1,2]
)

= {0.5}, since

both are viewed as equally reliable. Now, the estimate of the second ecologist becomes available

as well, and it turns out to be equal to the "standing" aggregate estimate, namely 0.5. Should

this be viewed as reinforcing this standing estimate, i.e. should Ψ̂DIV
(

(xi)i∈{1,2,3} , v
)

= {0.5}
as well?

While this conclusion might appear attractive superficially, we submit that one should reject it.

Heuristically, the opinion of the second ecologist should more strongly counterbalance (‘cor-

rect’) the opinion of the more similar source (the first ecologist) than that of the less similar

source (the economist). The aggregator "learns" that the first ecologist might have made a

mistake underestimating the probability as compared to the "common view" held by ecologists.

Hence, rather than reflecting the "wisdom" of ecology, some of the initial disagreement between

0.8 and 0.2 must reflect the idiosyncratic understanding of the first ecologist. Thus, one would

expect the best aggregate Ψ̂DIV
(

(xi)i∈{1,2,3} , v
)

to shift towards that of the economist, and

thus to exceed 0.5.

This is indeed what the Diversity value does, and what the Similarity Effect implies. Simply note

that, as shown in Example 5.1, for λ23 > λ12,w1 > w2 = w3, and, hence, Ψ̂DIV
(

(xi)i∈1,2,3} , v
)
>

0.5. Note also that by Continuity, the aggregate estimate will increase even if the second ecolo-

gist’s opinion is slightly lower than the standing aggregate.

In social choice theory, the phenomenon that an aggregate judgment or vote moves away from

the judgment of an individual that joins the poll is known as the No-Show paradox, see Fishburn

22 Consider the following family of reliability functions vε on I = {1, 2, 3} given by λ12 = λ13 = 1
2 , λ23 =

0, λ1 = λ2 = λ3 = ε. By Dominance, ΨDIV
(
v0
)

= {(1, 0, 0)}. Hence, by Continuity, for small but positive ε and

{wε} = ΨDIV (vε), wε1 is close to, but strictly less than 1, and thus wε1 > wε2 + wε3 while vε (1) < vε (2, 3).
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and Brams (1983) and Moulin (1988). It is viewed as ‘paradoxical’ there because the individual

is made worse off by joining the poll (‘showing up’). But this is not an issue here, because

source welfare plays no role, and may indeed be a meaningless concept.23 Furthermore, in the

standard social choice setting anonymity is usually taken for granted. By contrast, here it is,

as total symmetry across sources, rather exceptional. In general, there are similarities among

sources, and similarities are typically asymmetric. Indeed, in the special cases in which the

reliability function is totally symmetric across sources (“exchangeable”), the Diversity value

will assign equal weights to all available sources, and will thus never exhibit the No-Show

paradox. On the other hand, in the typical situations of asymmetric sources, the Similarity Effect

suggests that the No-Show paradox is likely to occur for some profiles of source judgments.

To understand a bit better when it materializes, it is illuminating to flesh out Example 5.2 within

the Type Partition model, with types {1} and {2, 3}. Specifically, for α ∈ [0, 1], let vα be given

by λ1 = 1, λ2 = λ3 = 1 − α, λ23 = α. Here α describes the similarity between the two

ecologists. An easy computation yields

ΨDIV (vα) =

(
1

3− α,
1

3− α
2− α

2
,

1

3− α
2− α

2

)
.

Intuitively, the more similar the two ecologists are, the smaller is their aggregate weight. Con-

sider the pattern of judgments described in Example 5.2, with the property

x1 >
1

2
x1 +

1

2
x2 ≥ x3.

When the second ecologist joins the poll, there are two countervailing effects: on the one

hand, the aggregate opinion of the ecologists shifts up (becomes more moderate), increasing

the overall estimate; on the other hand, the aggregate weight placed on the ecologists’ opinion

increases (from 1
2

to 2−α
3−α ), since, the ecologists’ aggregate reliability is now increased by λ2 =

(1− α). The No-Show paradox occurs if the first effect dominates the second, so that the

resulting aggregate is even further away from x3 than the initial one. Some straightforward

algebra establishes that this will be the case iff

x3 >
(1− α)x1 + x2

2− α .

For example, if α = 1
2

and x1 = 0.8 and x2 = 0.2, the No-Show paradox will occur iff

0.5 ≥ x3 > 0.4. Thus, for a given α, the estimate of the second ecologist needs to be sufficiently

23 A No-Show paradox may also give rise to incentive-compatibility issues, but these are not directly relevant here,

since the question here is how to aggregate given ‘true’ source judgments. Incentive-compatibility issues may make

it difficult for an aggregator to determine what these judgments are, and entail uncertainty about them.
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close to the standing average, and thus, sufficiently different from the first ecologist’s estimate.

The exact magnitudes depend on their similarity α; in the limiting case of the two ecologists

being clones, (α = 1), the No-Show paradox will occur whenever the second ecologists estimate

is just slightly higher than that of the first ecologist.

We will now show that the potential occurrence of the No-Show paradox is the rule rather than

the exception in our model. In social choice theory, a strong form of the negation of the No-

Show paradox is given by the Reinforcement axiom due to Young (1975); see also Myerson

(1995). Formally,

Definition 5.1 An aggregation scheme Ψ̂ satisfies Reinforcement at v if for all J ⊆ I and all

judgment profiles x = (xi)i∈I ,

Ψ̂
(
(xi)i∈I , v

)
= Ψ̂

(
(xi)i∈I , v

[J ]
)
∩ Ψ̂

(
(xi)i∈I , v

[I\J ]
)

if the intersection on the r.h.s. is non-empty.

Reinforcement says that if the aggregation of the sources in J and the aggregation of those in

I\J leads to the same judgment, then so does the aggregation of their union I . The No-Show

paradox corresponds to the negation of Reinforcement when either J or I\J is a singleton.

When does the Diversity value satisfy Reinforcement? The argument will proceed in two steps,

focussing on the case of a strictly monotone v. First, we will show that Reinforcement is

tantamount to a Fixed Weights property corresponding to the Fixed Weights model discussed in

the introduction. Second, we demonstrate that this property is satisfied by the Diversity value

only for exceptional reliability functions.

Definition 5.2 (Fixed Weights) Let Ψ be single-valued at v, with Ψ (v) = {w} and w >> 0.

Ψ satisfies Fixed Weights at v if for all J ⊂ I ,

Ψ
(
v[J ]
)

=


( wj∑

k∈J wk

)
j∈J

, (0...0)︸ ︷︷ ︸
i∈I\J


 . (11)

The following result establishes that, as a matter of simple arithmetic, Reinforcement is tanta-

mount to Fixed Weights. Note that the result applies to weighting rules generally, and is not

restricted to the Diversity value24.

Proposition 5.2 For |I| ≥ 3 and v ∈ V, let Ψ
(
v[J ]
)

be single-valued for all J ⊆ I and let

{w} = Ψ (v) satisfy w >> 0. Ψ satisfies Reinforcement at v iff Ψ satisfies Fixed Weights at v.

24 Note that, for the Diversity value, the premise is satisfied for all strictly monotone v. This will be the case

for many sensible values (such as the Shapley value). An exception is Take-The-Best which satisfies Reinforcement

at all v. This is the exception that proves the rule, inasmuch as TTB fails to obey the Similarity Principle.
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Note that as an immediate consequence of the Additive Core axiom, Fixed Weights and thus

Reinforcement holds for ΨDIV at any additive reliability function, i.e. in the absence of any

similarity whatsoever. On the other hand, generalizing the discussion of Example 5.2, for non-

additive, strictly monotone reliability functions, one would expect the Fixed Weight property to

hold only by coincidence, if the similarities among sources just happen to balance each other in

the needed way. This is shown by our following result.

Definition 5.3 v is quasi-additive if v (J ∪ J ′) = v(J) + v(J ′)− v(J ∩J ′) for all non-disjoint

J and J ′.

It is immediate to see that v is quasi-additive if and only if Λ ⊆ {{i}}i∈I ∪ {I}.

Proposition 5.3 Let |I| ≥ 3 and consider the set of strictly monotone reliability functions

v, VM . ΨDIV violates Reinforcement on an open and dense subset of VM . Indeed, for any

v ∈ VM , if v satisfies Reinforcement and is not quasi-additive, there exist arbitrarily close

v′ ∈ VM such that v′ violates Reinforcement and has the same set of relevant attributes as v,

Λ′ = Λ.

In the special case of uniform reliability functions, we can provide an exact characterization of

Reinforcement.

Proposition 5.4 ΨDIV satisfies Reinforcement at a uniform reliability function v if and only if

v is exchangeable.

Note that, for the special case of triples (but not for the general case), this Proposition is a

straightforward corollary to Proposition 5.1 above.25

6 Conclusion

In this paper, we have shown how diverse sources of judgment can be aggregated in a methodi-

cal, well-grounded fashion on the basis of assessments of their reliability. We have argued that

diverse sources can be more or less similar, and that the marginal contribution of sources to the

overall reliability can therefore differ significantly and systematically from their stand-alone

reliability. As illustrated by the Similarity Effect, optimally assigned weights need to reflect

the marginal rather than the standalone contribution of sources. The relative weights between

25 There are also nonuniform reliability functions v with the Fixed Weight property. For example,

for |I| = 3, let λ1 = 1
18 , λ2 = λ3 = 1

12 , λ13 = λ12 = 1
3 , λ23 = 1

9 . This satisfies Fixed Weights with Ψ (v) ={
w =

(
1
2 ,

1
4 ,

1
4

)}
. One may want to look for an exact characterization of Reinforcement for general reliability

functions. However, this example suggests that an interesting characterization of this property might not exist.
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sources will thus depend critically on which other sources are available as well. The Diver-

sity value proposed here pins down this context-dependence in a transparent, axiomatically

grounded manner. Superficially paradoxical-looking behaviors such as the No Show paradox,

in which the aggregate judgment moves in opposite direction to the input of new sources taken

at face vale, are not really paradoxical but a key design feature of the theory.

As a leading example of source aggregation, we have focused in much of the exposition on the

aggregation of expert judgments, in particular judgments of probability. Of course, the formal

framework of source aggregation is much broader than this, and so indeed is the weighting

problem. The main formal restriction of the framework is the assumption that the target judg-

ments is of the same kind (belongs to the same space) as the input judgments so that the target

judgment can be obtained by some kind of “weighted averaging”.

“Sources” might, in principle, be anything a decision maker is willing to base his own judgment

on. Sources need not be outside experts but could be alternative models a decision maker is

prepared to take seriously. Also, the components of an index on some matter might be viewed as

sources ‘by construction’. There are many potential applications, and in many of them, context-

dependence based on similarity effects appears natural. The diversity value holds substantial

promise for these applications, and it should be very interesting to develop these applications in

greater detail.

Of course, for some potential applications, the formal analogy may prove to be more apparent

than real. For example, are “cases” in the sense of case-based decision theory usefully viewed

as “sources” or not? On the face of it, the problems of learning and induction are quite different

from problems of aggregation, so one might be skeptical. On the other hand, as in BGSS, one

might identify cases with probability judgments derived from them, and take the probability of a

target case to be the weighted average of such case-based probabilities. “Classical” case-based

decision theory focuses on the relationship between individual cases and the target case; the

source-based model, by contrast, focuses on the relationship among individual sources/cases.

The resulting context-dependence and similarity effects seem very natural and highly relevant

in a case-based setting as well. We thus take the application of the diversity value to case-based

decision theory to be one line of significant interest for future research.

Once the general approach and solution proposal of this paper appeal, many follow-up questions

arise. How should a decision maker assess the reliability of sources? Can one flesh out the
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intuition of “reliability as valued diversity” in an instructive manner, or is one left with an

unexplained subjectivity, as in much of the tradition of subjective expected utility? If one takes

a third-person perspective, what testable implications does the diversity value have if a decision-

makers’ reliability assessments cannot be observed directly? To what extent can the reliability

assessments be inferred from observable aggregate judgments and choices?

Finally, and more directly related to the central task of this paper, is the diversity value norma-

tively uniquely privileged as a weighting rule? Does it have serious competitors? If so, what

virtues does the competitor have that the diversity value is missing?

Appendix A. Proofs

Proof of Proposition 3.1:

Define H (w, λ) =: −
∑

A∈Λ λA ln
(∑

i∈Awi
)
.

Part (i): Follows from the continuity and quasi-concavity of −H (w, λ).�
Part (ii): Denote by wA =:

∑
i∈Awi and note that −H (w, λ) is strictly concave in wA. Hence, if it

has a maximum w.r.t. wA, it is unique. It follows that for all w, w′ ∈ ΨDIV (v), wA = w′A for allA such

that λA > 0 and (since w, w′ ∈ ∆|I|−1), also for A = I , which is equivalent to the system of equations

(wA − w′A = 0)
{A|A∈Λ∪I }

. Since {1A | A ∈ Λ ∪ I} has full rank, we conclude that w = w′.�
Part (iii): Note that the condition in (iii) is equivalent to: for any v and the respective λ, any w ∈

ΨDIV (v) and any A ⊆ I , wA =:
∑

i∈Awi satisfies wA ≥
∑

A′⊆A
λA′
v(I) . Since wA ≥ 0, the statement of

the Lemma is non-trivial only if there is an A′ ⊆ A with λA′ > 0. Assume such an A′ exists. If wA = 0,

the entropy defined in (8) is infinitely negative. Hence wA = 0 cannot hold in the optimum. It follows

that wA > 0, whenever λA′ > 0 for some A′ ⊆ A, and, thus, there is an I ′ ⊆ A, such that wi > 0 for all

i ∈ I ′ and wi = 0 for i ∈ A\I ′, i.e., wA =
∑

i∈I′ wi.

If I ′ is a singleton, i.e., I ′ = {i′}, and if wi′ = 1, then wA = 1 ≥
∑
A′⊆A λA′

v(I) . Otherwise, for all i ∈ I ′,

wi ∈ (0, 1). The f.o.c. w.r.t. i′ ∈ I then implies:

wi′ =
∑

{A|i′∈A}

wi′
λA
v(I)∑

j∈Awj

and summing over all i′ ∈ A, we obtain

wA =
∑
i′∈A

∑
{A′|i′∈A′}

wi′
λA′
v(I)∑

j∈A′ wj
=

∑
A′⊆A λA′

v (I)
+
∑
i′∈A

∑
{A′|i′∈A′,A′ 6⊆A}

wi′
λA′
v(I)∑

j∈A′ wj
≥
∑

A′⊆A λA′

v (I)
.�

Part (iv): Suppose that i strictly dominates j. By definition, w ∈ ΨDIV (v) if it solves the system of
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equations26  ∑
{A∈Λ|i′∈A}

λA∑
j′∈Awj′

− v (I) + γ
i′

= 0


i′∈I

for some coefficients γ
i′
≥ 0 with γ

i′
> 0 implying wi′ = 0. Since i strictly dominates j in v, for any

such w, we have:∑
{A|i∈A}

λA
v(I)∑
k∈Awk

− 1 +
γ
i

v (I)
=

∑
{A|j∈A}

λA
v(I)∑
k∈Awk

+
∑

{A|i∈A,j 6∈A}

λA
v(I)∑
k∈Awk

− 1 +
γ
i

v (I)

=
∑

{A|j∈A}

λA
v(I)∑
k∈Awk

− 1 +
γ
j

v (I)
.

Since
∑

{A|i∈A,j 6∈A}

λA
v(I)∑
k∈A wk

> 0, this implies that γ
j
> 0 (regardless of whether γ

i
> 0 or γ

i
= 0 holds),

or, wj = 0.�
Part (v): LetC (i) denote the maximal set of clones of i in v. Note that for anyA ∈ Λ, eitherC (i) ⊆ A,

or C (i) ∩A = ∅. Hence, w ∈ ΨDIV (v), iff it satisfies the following conditions:∑
{A|k∈A}

λA
v(I)∑

j′∈A\C(i)wj′ + wC(i)
− 1 + γk = 0 for k 6∈ C (i) (A-1)

∑
{A|C(i)⊆A}

λA
v(I)∑

j′∈A\C(i)wj′ + wC(i)
− 1 + γC(i) = 0

∑
j′∈C(i)

wj′ = wC(i)

Similarly, w′ ∈ ΨDIV
(
v[I\{j}]) for some j ∈ C (i) iff it satisfies:∑
{A|k∈A}

λA
v(I)∑

j′∈A\C(i)w
′
j′ + w′C(i)

− 1 + γk = 0 for k 6∈ C (i) (A-2)

∑
{A|C(i)⊆A}

λA
v(I)∑

j′∈A\C(i)w
′
j′ + w′C(i)

− 1 + γC(i) = 0

∑
j′∈C(i)\{j}

w′j′ = w′C(i), w
′
j = 0.

It is obvious that if w′ is a solution to (A-2), then
(

(w′k)k 6∈C(i) , w
′
C(i)

)
satisfies the first two conditions

in (A-1). Furthermore, we have that
∑

j′∈C(i)w
′
j′ = w′C(i) = wC(i), hence w′ ∈ Ψ (v) and, hence,

invariance to cloning is satisfied.�
Part (vi): The proof of this statement proceeds by proving three consecutive claims. Let {vn}, the

corresponding {λn} and {wn} be sequences converging to v̄, the corresponding λ and w, respectively,

such that, for all n ∈ N, wn ∈ ΨDIV (vn) .We need to show that w ∈ ΨDIV (v̄), which is equivalent to:

26 It can be shown that the Lagrangian multiplier for the condition
∑
i∈I wi = 1 is v (I), see the

proof of Proposition 4.2 below.
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for any z ∈ ∆|I|−1, H
(
w, λ

)
≤ H

(
z, λ
)
. Note that if H

(
z, λ
)
< H

(
w, λ

)
, then, by convexity of H

in w, H
(

1
2z + 1

2w, λ
)
< H

(
w, λ

)
and

H

(
1

2
z +

1

2
w, λ

)
−H

(
w, λ

)
=

[
H (wn, λn)−H

(
w, λ

)]
+

[
H

(
1

2
z +

1

2
wn, λn

)
−H (wn, λn)

]
+

[
H

(
1

2
z +

1

2
w, λ

)
−H

(
1

2
z +

1

2
wn, λn

)]
.

Hence,

H

(
1

2
z +

1

2
w, λ

)
−H

(
w, λ

)
≥ lim inf

n→∞

[
H (wn, λn)−H

(
w, λ

)]
+ lim inf

n→∞

[
H

(
1

2
z +

1

2
wn, λn

)
−H (wn, λn)

]
+ lim inf

n→∞

[
H

(
1

2
z +

1

2
w, λ

)
−H

(
1

2
z +

1

2
wn, λn

)]
.

We now proceed to prove that the three terms on the r.h.s. of this inequality are greater or equal to 0,

in contradiction to the assumption of H
(
z, λ̄
)
< H

(
w̄, λ̄

)
. We do so by proving the following three

claims:

Claim 1 limn→∞
[
H (wn, λn)−H

(
w, λ

)]
= 0.

Proof of Claim 1:

Decompose

H (wn, λn)−H
(
w, λ

)
=
∑
A∈Λ̄

[
λA lnwA − λnA lnwnA

]
+
∑
A∈Λ̄c

[
λA lnwA − λnA lnwnA

]
.

First note that, by the proof of Part (iii), for all A ∈ 2|I|, since wnA ≥ λnA for all n, we have wA ≥ λA.

Thus,

lim
n→∞

∑
A∈Λ̄

[
λA lnwA − λnA lnwnA

] = 0 (A-3)

by a straightforward continuity argument. Further,

λA lnwA = 0 (A-4)

for all A ∈ Λ̄c by the definition of Λ̄. Finally, in view of Part (iii), for any A such λA = 0,

0 ≥ lim
n→∞

(λnA lnwnA) ≥ lim
n→∞

(λnA lnλnA) = 0,

hence,

lim
n→∞

(λnA lnwnA) = 0. (A-5)

The Claim follows combining (A-3), (A-4) and (A-5). �
Claim 2 limn→∞

[
H
(

1
2z + 1

2w, λ
)
−H

(
1
2z + 1

2w
n, λn

)]
= 0.
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Proof of Claim 2:

Analogously to the proof of Claim 1, decompose

H (wn, λn)−H
(
w, λ

)
=

∑
A∈Λ̄

[
λA lnwA − λnA lnwnA

]
+
∑
A∈Λ̄c

[
λA lnwA − λnA lnwnA

]
.

H

(
1

2
z +

1

2
w, λ

)
−H

(
1

2
z +

1

2
wn, λn

)
=

∑
A∈Λ̄

[
λnA ln

(
1

2
z +

1

2
wnA

)
− λA ln

(
1

2
z +

1

2
wA

)]
+

∑
A∈Λ̄c

[
λnA ln

(
1

2
z +

1

2
wnA

)
− λA ln

(
1

2
z +

1

2
wA

)]
.

Since wnA → wA > 0 for all A ∈ Λ̄,

lim
n→∞

∑
A∈Λ̄

[
λnA ln

(
1

2
z +

1

2
wnA

)
− λA ln

(
1

2
z +

1

2
wA

)]
= 0. (A-6)

Also, by the definition of Λ̄,

λA ln

(
1

2
z +

1

2
wA

)
= 0 for all A ∈ Λ̄c. (A-7)

Finally, in view of Claim 1, for all A ∈ Λ̄c,

0 ≥ lim
n→∞

(
λnA ln

(
1

2
z +

1

2
wnA

))
≥ lim

n→∞

(
λnA

(
ln

1

2
+ lnλnA

))
= 0,

hence,

lim
n→∞

(
λnA ln

(
1

2
z +

1

2
wnA

))
= 0. (A-8)

The Claim follows combining (A-6), (A-7) and (A-8). �
Claim 3 lim infn→∞

[
H
(

1
2z + 1

2w
n, λn

)
−H (wn, λn)

]
≥ 0.

Proof of Claim 3:

This is straightforward from the assumption thatwn ∈ ΨDIV (vn), which implies thatH
(

1
2z + 1

2w
n, λn

)
−

H (wn, λn) ≥ 0 for all n.�
Putting together Claims 1, 2 and 3 implies the upper hemicontinuity of ΨDIV .�
Part (vii): Note that Robustness is vacuously satisfied for any strictly monotone v. Hence, consider a v

with a corresponding λ such that λi = 0 for all i ∈ I0 ⊆ I and λi > 0 for all i 6∈ I0. Let w ∈ ΨDIV (v)

and define λ̃ and λ̂ as:

λ̃A = :

{
wi if A = {i} for some i ∈ I
0 else

λ̂A = :

{ 1
|I| if A = {i} for some i ∈ I
0 else

For ξn ∈ (0, 1) and εn ∈ (0, 1), let λ̄ (ξn) := ξnλ̃+(1− ξn)λ and λn =: εnλ̂+(1− εn) λ̄ (ξn). Then27,

ΨDIV
(
λ̄ (ξn)

)
= {w}. We now prove the following Claim:

Claim 4 For each n, ΨDIV (λn) is a singleton and limεn→∞ΨDIV (λn) = {w}.

27 This follows from the fact that ΨDiv satisfies Betweenness, see Axiom 4 in Section 4 and the

proof of Theorem 4.1.
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Proof of Claim 4:

Note that the function

εn
∑
i∈I

1

|I| ln w̃i + (1− εn)
∑
A∈Λ̄

λ̄A (ξn) ln
∑
i∈A

w̃i

is strictly concave for each εn > 0. Hence, it has a unique optimum and, therefore, ΨDIV (λn) is indeed

a singleton. By Part (iii) of the Proposition, if ŵn ∈ ΨDIV (λn), then ŵni > 0 for all i ∈ I and all n.

From the f.o.c., for any i ∈ I ,

εn

|I|
1

ŵni
+ (1− εn)

∑
{A|i∈A}

λ̄A (ξn)∑
j∈A ŵ

n
j

= 1, or

(1− εn)

 ∑
{A|i∈A}

λ̄A (ξn) ŵni∑
j∈A ŵ

n
j

− ŵni

 = ŵni
(|I| − 1) εn

|I| .

Since ŵni < 1, we have:  ∑
{A|i∈A}

λ̄A (ξn) ŵni∑
j∈A ŵ

n
j

− ŵni

 ≤ |I| − 1

|I|
εn

1− εn

and we conclude that: ∑
A|i∈A

λ̄A (ξn) limεn→0 ŵ
n
i∑

j∈A limεn→0 ŵnj
− lim
εn→0

ŵni = 0.

Since w is the unique Diversity value of λ̄ (ξn) and since, ΨDIV is upper hemicontionuous, it follows

that limεn→0 ŵ
n
i = wi for all i ∈ I , or limεn→0 ΨDIV (λn) = {w}.�

From Claim 4, it follows that for a given ξn and any ε > 0, there exists an ε̄ > 0 such that ‖ŵn − w‖ ≤ ε,

whenever εn < ε̄. Take two sequences ξn and εn such that limn→∞ ξ
n = limn→∞ εn = 0. Let ε̄n be

such that ‖ŵn − w‖ ≤ εn, whenever εn ≤ ε̄n. Construct the sequence εn = ε̄n

n for each n. Since ε̄n is

bounded above, limn→∞ εn = 0. We then have limn→∞ λ
n = λ and for each n, ‖ŵn − w‖ ≤ εn, or

limn→∞ ŵn = w.�
Part (viii): Multiplication of v by a constant c is equivalent to multiplication of all (λA)A∈Λ by c.

Clearly, the solution of the optimization problem in (8) remains unchanged.�
Part (ix): Condition (4), which defines λ for a given v implies that if v′ (J) = v (J) + b for every

J ⊆ I , J 6= ∅, then λA = λ′A for all A 6= I and λ′I = λI + b. Hence,

ΨDIV
(
v′
)

= arg max
w̃∈∆|I|−1

∑
A∈Λ

λ′A ln

(∑
i∈A

w̃i

)

= arg max
w̃∈∆|I|−1

(∑
A∈Λ

λA ln

(∑
i∈A

w̃i

)
+ b ln

∑
i∈I

w̃i

)

= arg max
w̃∈∆|I|−1

∑
A∈Λ

λA ln

(∑
i∈A

w̃i

)
= ΨDIV (v) .�
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Proof of Proposition 4.2:

Note that the definition of the Shapley Fixpoint value can be rewritten as:

wi =
∑
{A|i∈A}

wi
λA
v(I)∑

j∈Awj
for all i ∈ I . (A-9)

Part (i): We have to show that for a given v and the corresponding λ, the solution of the following

optimization problem:

max
(wi)i∈I∈∆|I|−1

{∑
A

λA ln
∑
i∈A

wi

}
(A-10)

is an element of ΨSFX , i.e., it satisfies condition (A-9). Since the function in (A-10) is continuous and

since ∆|I|−1 is a compact and convex set, a maximizer always exists and it satisfies the f.o.c. of (A-10): ∑
{A|i∈A}

λA∑
j∈Awj

− κ+ γ
i

= 0


i∈I

,

where κ is the Lagrangian multiplier corresponding to the condition
∑

i∈I wi = 1, whereas γ
i

is the

multiplier associated with wi ≥ 0. Consider two cases:

Case 1: γ
i

= 0 for all i and, hence, wi ∈ (0, 1) for all i ∈ I . Then the condition reduces to:∑
{A|i∈A}

λA∑
j∈Awj

− κ = 0 for all i ∈ I . (A-11)

Since wi > 0 for all i ∈ I , this is equivalent to∑
{A|i∈A}

λAwi∑
j∈Awj

− κwi = 0 for all i ∈ I .

Summing over all i’s then gives:∑
i∈I

∑
{A|i∈A}

λAwi∑
j∈Awj

− κ =
∑
A

∑
i∈A

λAwi∑
j∈Awj

− κ =
∑
A

λA
∑

i∈Awi∑
j∈Awj

− κ

=
∑
A

λA − κ = v (I)− κ = 0,

hence, κ = v (I) and (A-11) is equivalent to (A-9). It follows that w ∈ ΨSFX (v).

Case 2: γ
i
> 0 for all i ∈ I ′ ⊂ I and, hence, wi = 0 for all i ∈ I ′. In this case, (A-11) only holds for

i 6∈ I ′. Just as in Case 1, κ = v (I). Hence,∑
{A|i∈A}

λA
v(I)wi∑
j∈Awj

= wi

is satisfied for all i ∈ I , or w ∈ ΨSFX (v).�
Part (ii) Since all sources in v are either strictly dominated, or essential, by Parts (iii) and (iv) of

Proposition 3.1, under the Diversity value, wi > 0 for all essential sources, whereas wi = 0 for all

dominated ones. Note that under ΨSFX , a source which is dominated by an essential source receives a

0-weight. To see this, assume that i is essential and dominates j given v. Then, the definition of ΨSFX
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implies that wi > 0 and by dominance,∑
{A|i∈A}

λA∑
j′∈Awj′

− κ = 0 >
∑

{A|j∈A}

λA∑
j′∈Awj′

− κ.

Therefore, γ
j
> 0 and wj = 0 under the Shapley Fixpoint value. Hence, both ΨSFX and ΨDIV assign

a weight of 0 to all dominated sources.

Consider the system of equations constrained to the undominated / essential sources: ∑
{A|i∈A}

λA∑
j′∈Awj′

− κ = 0


i - undominated

As shown above, the solution to this system is unique and, together with wj = 0, whenever j is dom-

inated, is equivalent to the condition specifying the Shapley Fixpoint value. It also corresponds to the

condition specifying the Diversity value. Hence, ΨSFX (v) = ΨDIV (v).

Since for a strictly monotone v, all sources are essential, the same result applies.�
Part (iii): We will prove the following two claims, which combined imply the result.

Claim 5 Any upper hemicontinuous selection Ψ of ΨSFX must satisfy Ψ (v) ⊇ ΨDIV (v) for all

v ∈ V

Proof of Claim 5: Follows from the robustness of ΨDIV .�
Claim 6 For any v ∈ V, ΨDIV (v) is the only convex subset of ΨSFX (v) which contains ΨDIV (v).

Proof of Claim 6:

Note that both ΨDIV (λ) and ΨSFX (λ) are invariant up to normalizing v (I) = 1. Hence, for the

purposes of this proof, we set v (I) =: 1. We start with the following observation. Suppose that

w ∈ ΨDIV (λ) and supp (w) =: J . Then{
w ∈ ΨSFX (λ) | supp (w) = J

}
=
{
w ∈ ΨDIV (λ) | supp (w) = J

}
.

To see this, suppose that w ∈ ΨDIV (λ) and supp (w) =: J . It follows that

(wi)i∈J ∈ arg max
(wi)i∈J∈∆|J|−1

∑
A

λA ln

( ∑
i∈A∩J

wi

)
,

and since wi > 0 for all i ∈ J , we conclude that the following f.o.c. hold:∑
{A|i∈A}

λA∑
j∈A∩J wj

= 1 for all i ∈ J

and since the function to be maximized is concave, all of the solutions are maximizers. It follows that{
w ∈ ΨSFX (λ) | supp (w) = J

}
=
{
w ∈ ΨDIV (λ) | supp (w) = J

}
.

Hence, for any J ⊆ I , we have that: if there is a w ∈ ΨDIV (λ) s.t. supp (w) = J , then{
w ∈ ΨSFX (λ) | supp (w) = J

}
=
{
w ∈ ΨDIV (λ) | supp (w) = J

}
.

Furthermore, if supp (w) = J and supp (w′) = J ′ for w, w′ ∈ ΨDIV (λ), then (by Convexity) there is
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a w′′ ∈ ΨDIV (λ) such that supp (w′′) = J ∪ J ′.

If for each J ⊆ I such that there is a w ∈ ΨSFX (λ) with supp (w) = J , there exists a w′ ∈ ΨDIV (λ)

with supp (w′) = J , then ΨSFX (λ) = ΨDIV (λ) and the statement of the Proposition is true. Hence,

suppose that there is a J ⊆ I such that there is a w ∈ ΨSFX (λ) with supp (w) = J , but no w′ ∈

ΨDIV (λ) with supp (w′) = J . We want to show that there is a w′ ∈ ΨDIV (λ) and an α ∈ (0, 1) such

that αw + (1− α)w′ 6∈ ΨSFX (λ).

Case 1: Let there exist a w′ ∈ ΨDIV (λ) with supp (w′) = J ′ ⊃ J . Then, supp (αw + (1− α)w′) =

J ′. Hence, if αw + (1− α)w′ ∈ ΨSFX (λ) for all α ∈ (0, 1), then αw + (1− α)w′ ∈ ΨDIV (v) for

all α ∈ (0, 1). But ΨDIV (λ) is u.h.c., hence, we should have w ∈ ΨDIV (v), a contradiction.

Case 2: Suppose that there is no w′ ∈ ΨDIV (λ) with supp (w′) ⊇ J . Suppose, however, that there is a

w′ ∈ ΨDIV (λ) with supp (w′) = J ′ ⊂ J . We will show that there is an α such that αw+ (1− α)w′ 6∈

ΨSFX (λ). Write down the conditions defining w ∈ ΨSFX (λ) with support J and those defining

w′ ∈ ΨDIV (λ) with support J ′ as follows:∑
{A|i∈A}

λA∑
j∈A wj

= 1 for all i ∈ J∑
{A|i∈A}

λA∑
j∈A wj

> 1 for some i 6∈ J (this follows from the fact that w 6∈ ΨDIV (λ))∑
{A|i∈A}

λA∑
j∈A w

′
j

= 1 for all i ∈ J ′′ ⊇ J ′ (here, we take into account that for some i s.t. w′i = 0,

γ
i

= 0 can obtain)∑
{A|i∈A}

λA∑
j∈A w

′
j
< 1 for all i 6∈ J ′′

Take a i 6∈ J ′′. Then, since the function λA∑
j∈A w

′
j

is convex in w, we obtain that for small enough α’s,∑
{A|i∈A}

λA∑
j∈A

[
αwj + (1− α)w′j

] ≤ ∑
{A|i∈A}

α
λA∑
j∈Awj

+
∑
{A|i∈A}

(1− α)
λA∑
j∈Aw

′
j

≤ 1. (A-12)

Now take a i ∈ J ′′ ∩ J . We have:∑
{A|i∈A}

λA∑
j∈A

[
αwj + (1− α)w′j

] ≤ ∑
{A|i∈A}

α
λA∑
j∈Awj

+
∑
{A|i∈A}

(1− α)
λA∑
j∈Aw

′
j

= 1.

Hence, if
∑
{A|i∈A}

λA∑
j∈A wj

> 1 only if i 6∈ J ′′, we have that for sufficiently small α’s,∑
{A|i∈A}

λA∑
j∈A

[
αwj + (1− α)w′j

] ≤ 1

for all i ∈ I . Hence, if αw+ (1− α)w′ ∈ ΨSFX (λ), then αw+ (1− α)w′ ∈ ΨDIV (λ), in contradic-

tion to the assumption that there is no w ∈ ΨDIV (λ) such that supp (w) ⊇ J . It follows that for small

α’s, αw + (1− α)w′ 6∈ ΨSFX (λ).

Suppose therefore that
∑
{A|i∈A}

λA∑
j∈A wj

> 1 for some i ∈ J ′′, i.e., J ′′ ⊃ J . Note that for i ∈ J ′′\J ,

w′i = 0 and, hence, for each A such that i ∈ A, there must be a j such that j ∈ J ′ ⊂ J (i.e., wj > 0 and

w′j > 0) and j ∈ A. For this j to be in the support of the Fixpoint value defined by αw + (1− α)w′,

the weak equality in (A-12) has to hold with equality, which, by the Jensen’s inequality requires that
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∑
j′∈Awj′ =

∑
j′∈Aw

′
j′ for all A s.t. j ∈ A and in particular, for each A, s.t. i, j ∈ A. It follows that

for each i ∈ J ′′\J and each A ∈ Λ s.t. i ∈ A, we have∑
j′∈A

wj′ =
∑
j′∈A

w′j′ ,

and since ∑
{A|i∈A}

λA∑
j∈Aw

′
j

= 1,

we obtain ∑
{A|i∈A}

λA∑
j∈Awj

= 1,

as well, in contradiction to the assumption made above.

Case 3: Suppose that there is no w′ ∈ ΨDIV (λ) with supp (w′) ⊇ J . Suppose, however, that there is a

w′ ∈ ΨDIV (λ) with supp (w′) = J ′ such that neither J ′ ⊂ J , nor J ′ ⊃ J . We will show that there is

an α such that αw + (1− α)w′ 6∈ ΨSFX (λ).

The conditions defining w ∈ ΨSFX (λ) with support J and those defining w′ ∈ ΨDIV (λ) with sup-

port J ′ are just as above. We also have that supp (αw + (1− α)w′) = J ∪ J ′. Hence, if for each

α ∈ (0, 1), (αw + (1− α)w′) ∈ ΨSFX (λ), we could choose a α ∈ (0, 1) and αw + (1− α)w′ ∈

ΨSFX (λ). If αw + (1− α)w′ ∈ ΨDIV (λ), we have a contradiction to the assumption made above.

If αw + (1− α)w′ 6∈ ΨDIV (λ), then we have supp (αw + (1− α)w′) 6= J ∪ J ′ ⊃ J ′, just as

in Case 2. Hence, applying the same reasoning, we obtain that there is a β sufficiently close to

0 such that β (αw + (1− α)w′) + (1− β)w′ 6∈ ΨSFX (λ), in contradiction to the assumption that

α̃w + (1− α̃)w′ ∈ ΨSFX (λ) for each α̃ ∈ (0, 1).

We have thus shown that

(i) if for each J ⊆ I such that there is a w ∈ ΨSFX (λ) with supp (w) = J , there exists a w′ ∈
ΨDIV (λ) with supp (w′) = J , then ΨSFX (λ) = ΨDIV (λ);

(ii) if there is a J ⊆ I such that there is a w ∈ ΨSFX (λ) with supp (w) = J , but no w′ ∈ ΨDIV (λ)
with supp (w′) = J , then for anyw′ ∈ ΨDIV (λ), there exists an α ∈ (0, 1) such that αw+(1− α)w′ 6∈
ΨSFX (λ).

Combining (i) and (ii), we conclude that the set ΨDIV (λ) is the only convex subset of ΨSFX (λ)

containing ΨDIV (λ).�
Claims 5 and 6 imply the result of Part (iii). �
Proof of Theorem 4.1:

The intuition behind the proof can be summarized as follows: for the subclass of diversity functions,

which are additive, except for clones, we can show that Ψ (v) ⊆ ΨDIV (v). We then show that any

strictly monotone diversity function v with Diversity value ΨDIV (v) = {w} can be represented as a

linear combination of its Diversity value w and diversity functions which are additive except for clones
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and such that w belongs to their Diversity values as well. If the so-constructed linear combination is also

a convex combination, Betweenness implies that w is the unique value in Ψ (v). If not, we can show that

there exists an α ∈ (0; 1) such that αw + (1− α) v can be represented as such a convex combination

for sufficiently large α’s and, by Betweenness, {w} = Ψ (αw + (1− α) v) = ΨDIV (αw + (1− α) v).

Furthermore, for strictly monotone v, w ∈ ΨDIV (αw + (1− α) v) implies w ∈ ΨDIV (v). It follows

that for strictly monotone v, Ψ (v) ⊆ ΨDIV (v), which in turn in a singleton, hence, Ψ (v) = ΨDIV (v)

in the interior ofV. The last part of the proof uses the continuity of Ψ as well as the robustness of ΨDIV

to extend Ψ to the set of all diversity functions.

By Proposition 3.1, ΨDIV satisfies Axioms 1, 2, 5 and 6. We now prove that ΨDIV also satisfies the

remaining axioms.

Lemma A.1 ΨDIV satisfies Exclusion and Betweenness.

Proof of Lemma A.1:

To show that ΨDIV satisfies Exclusion, let j be such that wj = 0 for all w ∈ ΨDIV (v). Hence, any

such w solves the system of equations:∑
{A∈Λ′|i∈A}

λA
v(I)∑
j′∈Awj′

− 1 + γ
i

= 0 for all i ∈ I , which is equivalent to

∑
{A∈Λ′|i∈A}

λA
v(I)∑
j′∈A
j′ 6=j

wj′
− 1 + γ

i
= 0 for all i ∈ I\ {j}

∑
{A∈Λ′|j∈A}

λA
v(I)∑
j′∈A
j′ 6=j

wj′
− 1 ≤ 0

The second set of equations is exactly equivalent to the condition defining the Diversity value of v[I\{j}],

hence, ΨDIV (v) ⊆ ΨDIV
(
v[I\{j}]). Now suppose that there is a w̃ ∈ ΨDIV

(
v[I\{j}]) which does not

satisfy the last inequality, i.e.,∑
{A∈Λ′|i∈A}

λA
v(I)∑
j′∈A
j′ 6=j

w̃j′
− 1 + γ

i
= 0 for all i ∈ I\ {j}

∑
{A∈Λ′|j∈A}

λA
v(I)∑
j′∈A
j′ 6=j

w̃j′
− 1 > 0

and thus, w̃ 6∈ ΨDIV (v), but w̃ ∈ ΨSFX (v). If w̃ has the same support as an element w ∈ ΨDIV (v),

then w̃ ∈ ΨDIV (v), see the proof of Part (iii) of Proposition 4.2, a contradiction. Hence, there is

no element in ΨDIV (v) with the same support as w̃. It follows that, see the proof of Part (iii) of

Proposition 4.2, there is w′ ∈ ΨDIV (v) and an α ∈ (0; 1) such that αw̃ + (1− α)w′ 6∈ ΨSFX (v)

and hence, αw̃ + (1− α)w′ 6∈ ΨDIV
(
v[I\{j}]). Since however, w̃ and w′ ∈ ΨDIV

(
v[I\{j}]) and
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ΨDIV
(
v[I\{j}]) is convex, we obtain a contradiction.

To see that ΨDIV satisfies Betweenness, note that if for λ and λ′,

w ∈ arg max
w̃∈∆|I|−1

∑
λA ln

∑
i∈A

w̃i

w ∈ arg max
w̃∈∆|I|−1

∑
λ′A ln

∑
i∈A

w̃i,

then

w ∈ arg max
w̃∈∆|I|−1

∑[
αλ+ (1− α)λ′A

]
ln
∑
i∈A

w̃i.

It follows that Ψ (αv + (1− α) v′) ⊇ ΨDIV (v) ∩ ΨDIV (v′). Let w 6∈ ΨDIV (v) ∩ ΨDIV (v′). Since

ΨDIV (v) ∩ΨDIV (v′) 6= ∅,∑
A

(
αλA + (1− α)λ′A

)
ln
∑
i∈A

wi < max
w∈∆

∑
A

(
αλA + (1− α)λ′A

)
ln
∑
i∈A

wi

= αmax
w∈∆

∑
A

λA ln
∑
i∈A

wi + (1− α) max
w∈∆

∑
A

λ′A ln
∑
i∈A

wi,

Hence, w 6∈ Ψ (αv + (1− α) v′). We conclude that Ψ (αv + (1− α) v′) = ΨDIV (v) ∩ΨDIV (v′).�
We now show that the Axioms 1–5 imply ΨDIV . We first provide the dual statements of the axioms in

terms of λ:

Axiom 1A (Additive Core) If λ is additive, then Ψ (λ) =
{

λi∑
i∈I λi

}
.

Axiom 2A (Dominance) If a source i is dominated in λ, then w ∈ Ψ (λ) implies wi = 0.

Axiom 3A (Exclusion) If for a source i, wi = 0 for all w ∈ Ψ (λ), then Ψ (λ) = Ψ
(
λ[I\{i}]

)
.

Axiom 4A (Betweenness) If Ψ(λ) ∩Ψ(λ′) 6= ∅, then Ψ(αλ+ (1− α)λ′) = Ψ(λ) ∩Ψ(λ′)..

Axiom 5A (Convex-Valuedness) For all λ, Ψ(λ) is convex.

Axiom 6A (Continuity) For any sequence λn such that limn→∞ λ
n = λ and any sequence of

wn ∈ Ψ (λn) for all n, limn→∞w
n ∈ Ψ (λ).

It is obvious that Ψ (v) satisfies Axioms 1–6 iff Ψ (λ) satisfies Axioms 1A–6A. Hence, from now on,

we will work with λ and Ψ (λ) instead of v and Ψ (v). For a given v (I), consider the class of all λ such

that
∑

A∈Λ λA = v (I). For an arbitrarily chosen v (I), we now prove the Theorem on this class of λ’s.

Lemma A.2 If Ψ satisfies Axioms 2A, 5A and 6A (Dominance, Convex-Valuedness and Continuity),

then for λ’s such that λA = v (I) for some A ⊆ I ,

Ψ (λ) =

{
w |
∑
i∈A

wi = 1, wi = 0 for all i 6∈ A
}

. (A-13)

Proof of Lemma A.2:

The statement is true by Axiom 2A if |A| = 1. Thus, consider the case of |A| > 1. Take a λ satisfying

the condition of the Lemma and note that all sources i 6∈ A are strictly dominated by the sources in A.
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Hence, by Axiom 2A, wi = 0 for all i 6∈ A and all w ∈ Ψ (λ). Take a j ∈ A and consider a sequence λξ

such that λξA = v (I) − ξ, λξj = ξ. Since each i 6= j is strictly dominated by j, by Axiom 2A, wξi = 0

for all i 6= j and all w ∈ Ψ
(
λξ
)
. It follows that Ψ

(
λξ
)

= (wj = 1, wi = 0 for all i 6= j). Obviously,

limξ→0 λ
ξ = λ and limξ→0w

ξ = (wj = 1, wi = 0 for all i 6= j). Thus, by Axiom 6A, we must have

(wj = 1, wi = 0 for all i 6= j) ∈ Ψ (λ) for all j ∈ A. By Axiom 5A, Ψ (λ) is convex and, thus contains

the convex hull of all these points, which is exactly (A-13).�
Furthermore,

Lemma A.3 If Ψ satisfies Axioms 1A—3A, 5A and 6A, then for any B ⊆ I and λ such that λA > 0

only if A ∈
{
{i}i 6∈B ;B

}
,

Ψ (λ) ⊇
{
w | wi = λi for i 6∈ B and

∑
i∈B

wi = λB

}
. (A-14)

Proof of Lemma A.3:

By Axiom 1A, the statement is true for |B| = 1. Thus, consider the case of |B| > 1. Take a j ∈ B

and consider a sequence λξ such that λξk = λk for k 6∈ B, λξB = λB − ξ, λξj = ξ. Since each i ∈ B,

i 6= j is strictly dominated by j, by Axiom 2A, wξi = 0 for all i ∈ B, i 6= j and all w ∈ Ψ
(
λξ
)
. Define

λ′ξj = λB , λ′ξk = λk for k 6∈ B and note that by iterative application of Axiom 3A, and by Axiom 1A,

Ψ
(
λξ
)

= Ψ
(
λ′ξ
)

=
{
wξ | wξk = λk for k 6∈ B, wξj = λB , wξi = 0 for all i ∈ B, i 6= j

}
.

Since limξ→0 λ
ξ = λ and

lim
ξ→0

wξ = (wk = λk for k 6∈ B, wj = λB , wi = 0 for all i ∈ B, i 6= j) ,

by Axiom 6A, Ψ
(
λξ
)
⊆ Ψ (λ) for any choice of j ∈ B. By Axiom 5A, Ψ (λ) is convex and, thus

contains the convex hull of all these points, which is exactly the r.h.s. of (A-14).�

Proposition A.4 If Ψ satisfies Axioms 1A – 6A, then for any strictly monotone v, i.e., for any λ such

that λi > 0 for all i ∈ I , we have:

Ψ (λ) = ΨDIV (λ) .

Proof of Proposition A.4:

For a strictly monotone v, i.e., λi > 0 for all i ∈ I , implies wi > 0 for all w ∈ ΨDIV (λ). Furthermore,

the unique w such that {w} = ΨDIV (λ) satisfies the system of equations: ∑
{A|i∈A}

λA
v(I)∑
j∈Awj

= 1


i∈I

. (A-15)

For each A such that λA > 0, A 6∈
{
{i}i∈I

}
, construct λA in the following way: λAi = v (I)wi for all

i 6∈ A, λAA = v (I)
∑

i∈Awi and λAA′ = 0 for all A′ 6∈
{
{i}i 6∈A , A

}
. Let λ̄ be defined as: λ̄i = v (I)wi

for all i ∈ I and λ̄A = 0 for all A 6∈
{
{i}i∈I

}
. For each A with λA > 0 and A 6∈

{
{i}i∈I

}
, let
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βA =:
λA
v(I)∑
j∈A wj

. Then, for any such A, we have:∑
{A|λA>0,A 6∈{{i}i∈I}}

βAλ
A
A =

λA∑
j∈Awj

∑
k∈A

wk = λA.

Furthermore, for any i ∈ I ,

∑
{A|λA>0,A 6∈{{j}j∈I}}

βAλ
A
i +

1−
∑

{A|λA>0,A 6∈{{j}j∈I}}
βA

 λ̄i (A-16)

=
∑
{A|i 6∈A}

λA∑
k∈Awk

wi +

v (I)−
∑

{A|λA>0,A 6∈{{j}j∈I}}

λA∑
k∈Awk

wi

= wi

v (I)−
∑

{A|λA>0, i∈A,A 6={i}}

λA∑
k∈Awk

 = wi
λi
wi

= λi

It follows that

∑
{A|λA>0,A 6∈{{i}i∈I}}

βAλ
A +

1−
∑

{A|λA>0,A 6∈{{i}i∈I}}
βA

 λ̄ = λ. (A-17)

To prove the remainder of Proposition A.4, we state the following Lemmata:

Lemma A.5 For any λ, and any w̃ ∈ ∆|I|−1 such that

supp (w̃) = {i ∈ I , i is not null in λ} ,

there exists an α ∈ (0; 1) such that Ψ (αv (I) w̃ + (1− α)λ) = ΨSFX (αv (I) w̃ + (1− α)λ).

Proof of Lemma A.5:

Let w̃ ∈ ∆|I|−1 be such that supp (w̃) = {i ∈ I , i is not null in λ}. For such w̃, and any α ∈ (0; 1), we

will show that, by Part (ii) of Proposition 4.2, there is a unique wα ∈ ΨSFX (αv (I) w̃ + (1− α)λ).

To see this, note that if i is null, then
∑
{A|i∈A} (αv (I) w̃i + (1− α)λA) = 0 and, hence, wαi = 0

for all wα ∈ ΨSFX ((αv (I) w̃ + (1− α)λ)). Furthermore, since αv (I) w̃i + (1− α)λi > 0 for all

non-null sources i, Part (ii) of Proposition 4.2 implies that ΨSFX (αv (I) w̃ + (1− α)λ) is a singleton

and

ΨSFX (αv (I) w̃ + (1− α)λ) = ΨDIV (αv (I) w̃ + (1− α)λ) .

For a given α and {wα} = ΨDIV (αv (I) w̃ + (1− α)λ), define the sets λA (α) and the coefficients βαA

as above. Note that expression (A-16) is satisfied for all i such that wαi > 0, but also for all i such that

wαi = 0, since then αv (I) w̃i + (1− α)λi = 0. Hence, αv (I) w̃i + (1− α)λi can be represented as a

linear combination as in (A-17) and

αv (I) w̃ + (1− α)λ =
∑

{A|λA>0,A 6∈{{i}i∈I}}
βαAλ

A (α) +

1−
∑

{A|λA>0,A 6∈{{i}i∈I}}
βαA

 v (I)wα
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If
∑
{A|λA>0,A 6∈{{j}j∈I}} β

α
A < 1, then, by Lemma A.3, (wαi )i∈I ∈ Ψ

(
λA (α)

)
for all A and by Axiom

1A, Ψ (v (I)wα) = {wα}. Then applying iteratively Axiom 4A, {wα} = Ψ (αv (I) w̃ + (1− αλ)) =

ΨSFX (αv (I) w̃ + (1− αλ)).

If
∑
{A|λA>0,A 6∈{{j}j∈I}} β

α
A ≥ 1, then for any α,

βαA =
(1− α) λA

v(I)∑
j∈Aw

α
j

≤
(1− α) λA

v(I)∑
j∈A αw̃j

.

Note that ∑
{A|λA>0,A 6∈{{j}j∈I}}

βαA ≤
∑

{A|λA>0,A 6∈{{j}j∈I}}

(1− α) λA
v(I)∑

j∈A αw̃j
<

<
(1− α)

∑
{A|λA>0,A 6∈{{j}j∈I}}

λA
v(I)

αmini∈supp(w̃) w̃i

Hence, if

(1− α)
∑
{A|λA>0,A 6∈{{j}j∈I}}

λA
v(I)

αmini∈supp(w̃) w̃i
< 1, or∑

{A|λA>0,A 6∈{{j}j∈I}}
λA
v(I)[

mini∈supp(w̃) w̃i +
∑
{A|λA>0,A 6∈{{j}j∈I}}

λA
v(I)

] = : ᾱ < α

then
∑
{A|λA>0,A 6∈{{j}j∈I}} β

α
A < 1 will obtain whenever α > ᾱ. Again applying iteratively Axiom

4A, Ψ (αv (I)w + (1− α)λ) = ΨSFX (αv (I)w + (1− α)λ) holds for all α ≥ ᾱ.�

Lemma A.6 If w 6∈ ΨSFX (v), then w 6∈ ΨSFX (αv + (1− α) v (I)w).

Proof of Lemma A.6:

Suppose that w ∈ ΨSFX (αλ+ (1− α) v (I)w), then ∑
{A|i∈A}

α λA
v(I)∑
i∈Awi

+
(1− α)wi

wi
= 1


i∈supp(w)

, or, equivalently,

 ∑
{A|i∈A}

λA
v(I)∑
i∈Awi

= 1


i∈supp(w)

,

hence, w ∈ ΨSFX (λ).�

Lemma A.7 For all λ such that λi > 0 for all i ∈ I , Ψ (λ) ⊆ ΨSFX (λ).

Proof of Lemma A.7:

Let w be an element of Ψ (λ) with maximal support with respect to set inclusion. Such an element exists

by Axiom 5A. Since w̃i = 0 for all i 6∈ supp (w) and all w̃ ∈ Ψ (λ), it follows by Axiom 3A that

Ψ (λ) = Ψ
(
λ[supp(w)]

)
. We also know that by Axioms 1A and 4A,

Ψ (αv (I)w + (1− α)λ) = Ψ
(
αv (I)w + (1− α)λ

[supp(w)]
)

= {w} .
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Note that supp (w) =
{
i ∈ I , i is not null in λ[supp(w)]

}
. Hence, by Lemma A.5, there exists an α ∈

(0; 1) such that:

Ψ
(
αv (I)w + (1− α)λ

[supp(w)]
)

= ΨSFX
(
αv (I)w + (1− α)λ

[supp(w)]
)

= {w} .

By Lemma A.6, this implies w ∈ ΨSFX
(
λ

[supp(w)]
)
⊆ ΨSFX (λ). Hence, w ∈ ΨSFX (λ).�

To complete the proof of Proposition A.4, note that for any strictly monotone λ and any w ∈ Ψ (λ), the

fact that Ψ (λ) ⊆ ΨSFX (λ) = ΨDIV (λ) implies Ψ (λ) = ΨDIV (λ) = {w}.�
Our next lemma shows that even for λ’s not satisfying the conditions of Proposition A.4, w ∈ Ψ (λ)

only if w ∈ ΨSFX (λ).

Lemma A.8 If Ψ satisfies Axioms 1A – 6A, then for every λ, w ∈ Ψ (λ) only if w ∈ ΨSFX (λ).

Proof of Lemma A.8:

For a given λ, let w ∈ Ψ (λ), and assume that w 6∈ ΨSFX (λ). Take the convex combination αλ +

(1− α) v (I)w for some α ∈ (0; 1). By Axiom 4A, Ψ (αλ+ (1− α) v (I)w) = {w}. Consider λε

s.t. λεi > 0 for each i ∈ I and each ε > 0 and such that limε→0 λ
ε = λ. Then, by Proposition A.4,

for each ε > 0, Ψ (αλε + (1− α) v (I)w) = ΨDIV (αλε + (1− α) v (I)w). Furthermore, since Ψ

satisfies Axiom 6A,

lim
ε→0

ΨDIV (αλε + (1− α) v (I)w) = lim
ε→0

Ψ (αλε + (1− α) v (I)w) ⊆ Ψ (αλ+ (1− α) v (I)w) = {w} .

Since ΨDIV is upper hemicontinuous, we have that:

lim
ε→0

Ψ (αλε + (1− α) v (I)w) = lim
ε→0

ΨDIV (αλε + (1− α) v (I)w) ⊆ ΨDIV (αλ+ (1− α) v (I)w) .

Hence, by Part (i) of Proposition 4.2,w ∈ ΨDIV (αλ+ (1− α) v (I)w) ⊆ ΨSFX (αλ+ (1− α) v (I)w),

and by Lemma A.6, w ∈ ΨSFX (λ), in contradiction to our initial assumptions.�
Our next Lemma demonstrates that if Ψ satisfies Axioms 1A–6A, then Ψ (λ) ⊇ ΨDIV (λ).

Lemma A.9 If Ψ satisfies Axioms 1A–6A, then Ψ (λ) ⊇ ΨDIV (λ).

Proof of Lemma A.9:

Suppose to the contrary of the statement of the Lemma that there is a λ and a w ∈ ΨDIV (λ) such that

w 6∈ Ψ (λ). Consider a sequence λε s.t. λεi > 0 for each i ∈ I and each ε > 0 and such that limε→0 λ
ε =

λ. Then, by Proposition A.4, for each ε > 0, Ψ (λε) = ΨDIV (λε). Since ΨDIV satisfies Robustness,

there exists a sequence λε such that limε→0 ΨDIV (λε) = {w} and, hence, limε→0 Ψ (λε) = {w}. Since

by Axiom 6A, Ψ is upper hemicontinuous, w ∈ Ψ (λ), a contradiction.�
By Lemmata A.8 and A.9, we know that for all λ’s, ΨDIV (λ) ⊆ Ψ (λ) ⊆ ΨSFX (λ). Since Ψ satisfies

Axiom 5A, the proof of Part (iii) of Proposition 4.2 implies Ψ (λ) = ΨDIV (λ) for all λ such that∑
A∈Λ λA = v (I) for some v (I). Since v (I) was chosen arbitrarily, we have that Ψ (λ) = ΨDIV (λ)
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for all λ, thus concluding the proof of Theorem 4.1.�
Proof of Proposition 5.1:

The equivalence between (i), (ii) and (iii) is straightforward.

To prove the equivalence of (iii) and (iv), consider first the case of a diversity function, for which

w1 > 0 and w2 > 0 obtain. The f.o.c. conditions for sources 1 and 2 are then given by:

1 =
λ1

w1
+

λ12

w1 + w2
+

λ13

w1 + w3
, and

1 =
λ2

w2
+

λ12

w1 + w2
+

λ23

w2 + w3
.

Hence
λ1

w1
+

λ13

w1 + w3
=
λ2

w2
+

λ23

w2 + w3
.

Further, by uniformity

λ1 + λ12 + λ13 = λ2 + λ12 + λ23,

hence

λ1 + λ13 = λ2 + λ23 =: `.

Substituting, we have
λ1

w1
+

`− λ1

w1 + w3
=
λ2

w2
+

`− λ2

w2 + w3
,

i.e. (
1

w1
− 1

w1 + w3

)
λ1 +

`

w1 + w3
=

(
1

w2
− 1

w2 + w3

)
λ2 +

`

w2 + w3
. (A-18)

Hence if λ1 ≥ λ2 and w1 < w2, we get(
1

w1
− 1

w1 + w3

)
λ1 +

`

w1 + w3
>

(
1

w2
− 1

w2 + w3

)
λ1 +

`

w2 + w3
≥

≥
(

1

w2
− 1

w2 + w3

)
λ2 +

`

w2 + w3
,

contradicting (A-18).

As we know wi = 0 can only obtain if λi = 0. If λ1 > λ2 = 0, and w2 = 0, then w1 > 0 = w2. If

λ1 = λ2 = 0, we must have λ13 = λ23. If w1 = 0, then,

λ12

w2
+
λ13

w3
− 1 < 0

and, hence, as long as λ13 = λ23 > 0, i.e., 1 and 2 are not clones,

λ12

w2
+

λ23

w2 + w3
− 1 <

λ12

w2
+
λ13

w3
− 1 < 0

for any positive w2. It follows that w2 = w1 = 0.�
Proof of Proposition 5.2:
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Suppose first that Ψ satisfies Fixed Weights at v. Then, for a given w ∈ Ψ (v),∑
j∈J

wjxj∑
k∈J wk

 = Ψ̂
(

(xi)i∈I , v
[J ]
)

, ∑
i∈I\J

wixi∑
k∈I\J wk

 = Ψ̂
(

(xi)i∈I , v
[I\J ]

)
and if the two are equal, then{∑

i∈I
wixi

}
=

∑
k∈J

wk
∑
j∈J

wjxj∑
k∈J wk

+
∑
k∈I\J

wk
∑
i∈I\J

wixi∑
k∈I\J wk

 =

=

∑
j∈J

wjxj∑
k∈J wk

 =

∑
i∈I\J

wixi∑
k∈I\J wk

 = Ψ̂
(
(xi)i∈I , v

)
.

Suppose now that Ψ satisfies Reinforcement at v and consider a J ⊂ I and j, k ∈ J such that {w} =

Ψ (v) and {w̃} = Ψ
(
v[J ]
)

are such that
wj
wk

< w̃j
w̃k

. Let x satisfy xj = 1
3 , xk = 2

3 and xi = γ for all

i 6∈ {j, k}, where

γ :=
2

3

w̃j
w̃j + w̃k

+
1

3

w̃k
w̃j + w̃k

.

Then, by construction γ ∈ Ψ̂
(
x, v[J ]

)
, {γ} = Ψ̂

(
x, v[I\J ]

)
and hence, by Reinforcement, Ψ̂ (x, v) =

{γ}. However, since
2

3

wj
wj + wk

+
1

3

wk
wj + wk

< γ,

Ψ̂ (x, v) =
{∑

i∈I wixi
}

with
∑

i∈I wixi < γ, a contradiction.�
Proof of Proposition 5.3:

To see that Reinforcement is violated on an open subset ofVM , note that onVM , Reinforcement

is defined by a finite set of equations that are continuous in v, respectively λ. These equations

can be compactly written as

ΨWSV
ΨDIV (v)

(
v[J ]
)

= ΨDIV
(
v[J ]
)
.

The set of v satisfying Reinforcement is thus closed, hence its complement is open.

We now show that the subset ofVM on which Reinforcement is violated is dense.

Suppose ΨDIV satisfies Reinforcement at v ∈ VM , with ΨDIV = {w}. Let A be any non-

singleton strict subset of I . If v is not quasi-additive, take A ∈ Λ.

Define v′′ ∈ VM via λ′′ as follows:

λ′′{i} = wi if i /∈ A
λ′′{i} = 1

2
wi if i ∈ A

λ′′A = 1
2

(∑
i∈Awi

)
λ′′S = 0 otherwise.

.
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For any ε ∈ (0, 1), let v′ = εv′′ + (1 − ε)v and note that, by construction, ΨDIV (v′′) = {w}.
Hence, by Betweenness, also ΨDIV (v′) = {w}.
Take any J : Ac ( J ( I . For any i ∈ A, j /∈ A,

ΨDIV (v′′[J])i
ΨDIV (v′′[J])j

> wi
wj

. Since v, v′ and v′′ are

monotone, for each of them, ΨDIV and ΨFSV coincide and by Lemma A.6, we obtain

ΨDIV (v′[J ]) 6=


( wj∑

k∈J wk

)
j∈J

, (0...0)︸ ︷︷ ︸
i∈I\J


 .

ΨDIV thus fails to satisfy Fixed Weigths at v′, and, hence also Reinforcement by Proposition

5.2. �
Proof of Proposition 5.4:

We will prove the proposition using two Lemmata:

Lemma A.10 v is exchangeable if and only if, either for all J ⊆ I ,

ΨDIV
(
v[J ]
)

= ΨSV
(
v[J ]
)

=

{((
wj =

1

|J |

)
j∈J

, (wj = 0)j 6∈J

)}
(A-19)

or for all J ⊆ I ,

ΨDIV
(
v[J ]
)

=
(

(wj)j∈J ∈ ∆|J |−1, (wj = 0)j 6∈J

)
. (A-20)

Proof of Lemma A.10:

Suppose first that v is exchangeable, we have that for every J ⊆ I and any J ′, J ′′ ⊆ J such that

|J ′| = |J ′′|, v[J ] (J ′) = v[J ] (J ′′).

Note that for any exchangeable v, we have that either λI = v (I), and hence, for every J ⊆ I , (A-20)

obtains, or there exists a natural K, 0 < K < I such that λJ > 0 for all J with |J | = K. In the latter

case, we have that {1A | A ∈ Λ ∪ {I}} has full rank and hence, by Proposition 3.1, the Diversity value

of v is unique and given by

ΨDIV (v) = ΨSV (v) =

{(
1

|I| ...
1

|I|

)}
.

Furthermore, for a J ⊂ I with |J | > K, we know that for some (and then all), J ′ ⊂ J , |J ′| = K,

λ
[J ]
J ′ ≥ λJ ′ > 0. Hence, for such J , (A-19) obtains. For each J ⊂ I with |J | ≤ K, there is a

J ′ ⊂ J , and a J ′′ ⊂ I with |J ′′| = K such that J ′ = J ′′ ∩ J and |J | > |J ′| > 0. It then follows that

λ
[J ]
J ′′ ≥ λJ ′′ > 0 and hence, ΨDIV

(
v[J ]
)

also satisfies (A-19).

Suppose, now that (A-19) holds for all J ⊆ I . We want to show that v is exchangeable. We will prove

the claim by induction. The statement holds trivially for |I| = 1. Assume that it holds for all I ≤ K − 1

and let I = K. By the induction hypothesis, for any i, j ∈ I , v[I\{i}] and v[I\{j}] are both exchangeable,

i.e.,

v (J) = v
(
J ′
)
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whenever |J | = |J ′| and either J , J ′ ⊂ I\ {i} or J , J ′ ⊂ I\ {j}. Hence, v (J) = v (J ′) whenever

|J | = |J ′| < K − 2. From the symmetry of the Shapley value and the induction hypothesis, we obtain:

ΨSV
i (v)−ΨSV

j (v) =
1

|I| [v (I)− v (I\ {i})]− 1

|I| [v (I)− v (I\ {j})]

=
1

|I| [v (I\ {j})− v (I\ {i})] = 0

Hence, v (I\ {i}) = v (I\ {j}) for all i and j ∈ I and hence, v is exchangeable.

Finally, if (A-20) holds, we have that λI = v (I), and, hence v is exchangeable.�

Lemma A.11 A uniform v satisfies Reinforcement iff either for all J ⊆ I , (A-19) holds, or for all

J ⊆ I , (A-20) holds.

Proof of Lemma A.11:

It is clear that each of the conditions (A-19) and (A-20) implies Reinforcement. Assume thus that v is

uniform and satisfies Reinforcement. Note that this implies that v|J | is uniform for all J ⊆ I . We will

prove the claim by induction. If |I| = 2, uniformity implies either

ΨDIV (v) =

{(
1

2
,
1

2

)}
= ΨSV (v) ,

or ΨDIV (v) = ∆1. Suppose that there is a uniform v on |I| = 3 such that ΨDIV
(
v[i,j]

)
=
{(

1
2 ,

1
2

)}
and ΨDIV

(
v[i,k]

)
= ∆1. It is easy to see that this implies λi = λk = λij = λjk = 0, λj = λik. Hence,

ΨDIV (v) =
{(
wi ∈

[
0, 1

2

]
;wj = 1

2 ;wk = 1
2 − wi

)}
. Hence, (just as in Example 5.2), whenever xi 6=

xk, we obtain a violation of Reinforcement. It follows that for |I| = 3, Reinforcement implies either

ΨDIV
(
v[i,j]

)
=
{(

1
2 ,

1
2

)}
for all i, j ∈ I , and hence, ΨDIV (v) =

{(
1
3 ,

1
3 ,

1
3

)}
, or ΨDIV

(
v[i,j]

)
= ∆1

for all i, j ∈ I , and hence, ΨDIV (v) = ∆2

Suppose thus that for all I ≤ K − 1 and all uniform v, for which Reinforcement is satisfied, either

(A-19) holds for all J ⊆ I , or (A-20) holds for all J ⊆ I.

Consider a v on I = K ≥ 4. If all v[J ] with |J | = K − 1 satisfy (A-19), then, by Reinforcement, we

have that ΨDIV (v) =
{(

1
|I| ...

1
|I|

)}
and hence, v satisfies (A-19) as well. If all v[J ] with |J | = K − 1

satisfy (A-20), then, by Reinforcement, we have that ΨDIV (v) = ∆|I|−1 and hence, v satisfies (A-20)

as well.

Finally, suppose that there are J , J ′ ⊂ I , |J | = |J ′| = K − 1 such that v[J ] satisfies (A-19), whereas

v[J ′] satisfies (A-20). Since K − 1 ≥ 3, any two such sets J and J ′ have at least two common elements,

i and j. If wi = wj for all w ∈ Ψ (v), then setting xi 6= xj and 1
3xi + 2

3xj = xk for all k 6∈ {i, j}

implies that

Ψ̂
(
x1...x|I|; v

[I\J ′]
)
∩ Ψ̂

(
x1...x|I|; v

[J ′]
)

= xk 6=

6= Ψ̂
(
x1...x|I|; v

)
= (wi + wj)

(
1

2
xi +

1

2
xj

)
+ (1− wi − wj)xk
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in violation of Reinforcement. Alternatively, if for some w ∈ Ψ (v), wi 6= wj , then setting xi 6= xj and

1
2xi + 1

2xj = xk for all k 6∈ {i, j} implies that

Ψ̂
(
x1...x|I|; v

[I\J ]
)
∩ Ψ̂

(
x1...x|I|; v

[J ]
)

= xk 6=

6= wixi + wjxj + (1− wi − wj)xk ∈ Ψ̂
(
x1...x|I|; v

)
,

in violation of Reinforcement. This concludes the proof of the Lemma.�
Combining the results of Lemmata A.10 and A.11 implies the statement of the Proposition.�
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